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Preface

This textbook is intended to accompany a single-semester, introductory, graduate-
level course on plasma physics. Students are assumed to have a thorough grasp
of undergraduate classical mechanics and classical electrodynamics, as well as the
mathematics of waves and oscillations, integral and differential calculus, vector
fields, complex analysis, and Fourier and Laplace transforms. This book is not geared
to any particular application of plasma physics, and should be suitable for stu-
dents whose primary interest is either magnetic fusion, ionospheric physics, space
plasma physics, or astrophysics. There are, in fact, many different types of plasma
(e.g., strongly coupled plasma, dusty plasma, nonneutral plasma, degenerate plasma,
weakly ionized plasma). However, this book only discusses nonrelativistic, fully ion-
ized, nondegenerate, quasi-neutral, weakly coupled plasma, which is, by far, the most
commonly occurring plasma type in nature. The aim of book is to set out the theo-
retical framework conventionally used to describe such plasma in a clear and concise
manner. Chapter 1 introduces the fundamental parameters that characterize plasmas,
and, in the process, makes clear exactly what is meant by a nondegenerate, quasi-
neutral, weakly coupled plasma. Chapter 2 outlines the theory of charged particle
motion in weakly inhomogeneous electric and magnetic fields. This theory is central
to understanding how the magnetic confinement of a collisionless plasma works at
an individual particle level, and is used to investigate the Van Allen radiation belts.
Chapter 3 derives the ensemble-averaged kinetic equation that is the basis of all de-
scriptions of collective plasma motion. This derivation incorporates a detailed treat-
ment of binary Coulomb collisions in a weakly coupled plasma. Chapter 4 describes
how fluid equations are obtained by taking low-order moments of the kinetic equa-
tion, and also discusses the various asymptotic closure schemes that allow such equa-
tions to form complete sets. Particular care is taken to explain the circumstances in
which it is legitimate to adopt the well-known cold-plasma and MHD subsets of the
complete fluid equations. Finally, the fluid approach to plasma physics is illustrated
via an investigation of Langmuir sheaths. Chapter 5 investigates the propagation of
low-amplitude electromagnetic waves through uniform cold plasmas. Chapter 6 ex-
tends this investigation to deal with waves propagating through weakly inhomoge-
neous cold plasmas. Finally, Chapter 7 analyses low-amplitude wave propagation
through warm collisionless plasmas. Chapter 8 is devoted to the theory of magneto-
hydrodynamical fluids. Applications of this theory that are discussed in detail include
the solar wind, dynamo theory, and MHD shocks. Chapter 9 contains an in-depth ex-
position of the theory of magnetic reconnection. Major sources for the material ap-
pearing in this book include the The Framework of Plasma Physics by my colleagues
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Richard Hazeltine and Franco̧is Waelbroeck (particle drift theory, fundamental fluid
theory, collision theory, ray tracing), Plasma Physics by Alan Cairns (waves in cold
plasmas, waves in warm plasmas), The Physics of Plasmas by Thomas Boyd and
Jeffrey Sanderson (MHD shock theory, solar wind), Solar Magnetohydrodynamics
by Eric Priest (solar wind), and The Theory of Plasma Waves by Tom Stix (waves in
cold plasmas).

Working through exercises is a vital stage in mastering any branch of physics.
Hence, every chapter in this book ends with a selection of exercises that range from
simply filling in the inevitable gaps in the material presented in the chapter (such ex-
ercises are tedious, but mandatory for the serious student) to interesting further appli-
cations of this material. A complete set of solutions to all of the exercises appearing
in this book is available to adopting professors, upon request, from the publisher.
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C H A P T E R 1

Plasma Parameters

1.1 WHAT IS PLASMA?

In essence a plasma is an ionized gas. However, as this book is intended to demon-
strate, the behavior of ionized gases is sufficiently different from their nonionized
cousins that it is meaningful to talk of plasma as a fourth state of matter. (The other
three states being solid, liquid, and gas.) As is well known, a liquid is produced when
a crystalline solid is heated sufficiently that the thermal motions of its constituent
atoms disrupt its interatomic bonds. Likewise, a neutral gas is produced when a liq-
uid is heated sufficiently that atoms evaporate from its surface at a faster rate than
they recondense. Finally, a plasma is produced when a neutral gas is heated until
interatomic collisions become sufficiently violent that they detach electrons from
colliding atoms. Heating a plasma does not, however, produce a fifth state of matter.

Plasmas resulting from ionization of neutral gases consist of myriads of positive
and negative charge carriers whose relative numbers are in the inverse proportion to
the magnitude of their individual charges. In this situation, the oppositely charged
fluids, which are strongly coupled electrostatically, tend to electrically neutralize
one another on macroscopic lengthscales. Such plasmas are termed quasi-neutral
(“quasi” because the small deviations from exact neutrality can have important con-
sequences) (Goldston and Rutherford 1995).

Strongly nonneutral plasmas, which may even contain charge carriers of one sign
only, occur primarily in laboratory experiments and are not discussed in this book.
(Interested readers are referred to Davidson 2001.)

In earlier epochs of the universe, all (baryonic) matter was in the plasma state
(Longair 2008). In the present epoch, most (baryonic) matter remains in this state.
For instance, stars, nebulae, and even interstellar space are filled with plasma. The
solar system is also permeated with plasma in the form of the solar wind, and the
Earth is completely surrounded by plasma trapped within its magnetic field (Kallen-
rode 2010). Terrestrial plasmas occur in lightning, fluorescent lamps, a variety of
laboratory experiments, and a growing array of industrial processes. Indeed, the
glow discharge has become the mainstay of the micro-circuit fabrication industry
(Lieberman and Lichtenberg 2005).

DOI: 10.1201/9781003268253-1 1
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1.2 BRIEF HISTORY OF PLASMA PHYSICS

When blood is cleared of its various corpuscles, there remains a transparent liq-
uid that was termed plasma (after the ancient Greek word πλάσμα, which means
“that which is formed or molded”) by the Czech medical scientist Johannes Purkinje
(1787–1869). The American Nobel laureate chemist Irving Langmuir first used this
term to describe an ionized gas in 1927—Langmuir was reminded of the way that
blood plasma carries red and white corpuscles by the way that an electrified fluid
carries electrons and ions. Langmuir, along with his colleague Lewi Tonks, was in-
vestigating the physics and chemistry of tungsten-filament light bulbs, with a view to
finding a way to greatly extend the lifetime of the filament (a goal that he eventually
achieved). In the process, he developed the theory of plasma sheaths—the boundary
layers that form between plasmas and solid surfaces (Lieberman and Lichtenberg
2005). (See Section 4.17.) He also discovered that certain regions of a plasma dis-
charge tube exhibit periodic variations of the electron density, which we nowadays
term Langmuir waves. (See Section 7.2.) This was the genesis of plasma physics.
Interestingly enough, Langmuir’s research nowadays forms the theoretical basis of
most plasma processing techniques for fabricating integrated circuits (Lieberman and
Lichtenberg 2005). After Langmuir, plasma research gradually spread in other direc-
tions, of which five are particularly significant.

First, the development of radio broadcasting in the early 20th century led to the
discovery of the Earth’s ionosphere—a layer of partially ionized gas in the upper at-
mosphere that reflects radio waves, and is responsible for the fact that radio signals
can be received on the surface of the Earth when the transmitter lies over the horizon.
Unfortunately, the ionosphere also occasionally absorbs and distorts radio waves. For
instance, the Earth’s magnetic field causes waves with different polarizations (relative
to the orientation of the magnetic field) to propagate at different velocities, an effect
that can give rise to “ghost signals” (in other words, signals that arrive a little before
or a little after the main signal). In order to understand, and possibly correct, some
of the deficiencies in radio communication, various scientists, such as E.V. Apple-
ton and K.G. Budden, systematically developed the theory of electromagnetic wave
propagation through nonuniform magnetized plasmas (Budden 1985).

Second, in the first half of the 20th century, astrophysicists recognized that much
of the universe consists of plasma, and, thus, that a better understanding of astro-
physical phenomena requires a better grasp of plasma physics. The pioneer in this
field was the Swedish Nobel laureate Hannes Alfvén, who around 1940 developed
the theory of magnetohydrodynamics (MHD) in which plasma is treated essentially
as a conducting fluid (Cowling 1957a). This theory has been successfully employed
to investigate sunspots, solar flares, the solar wind, star formation, and a host of other
topics in astrophysics (Kallenrode 2010). Two topics of particular interest in MHD
theory are dynamo theory and magnetic reconnection. (See Section 8.9 and Chap-
ter 9.) Dynamo theory studies how the motion of an MHD fluid can give rise to the
generation of a macroscopic magnetic field. This process is important because the
terrestrial and solar magnetic fields would both decay away comparatively rapidly
(in astrophysical terms) were they not maintained by dynamo action (Kulsrud 2004).
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The Earth’s magnetic field is maintained by the motion of its molten core, which can
be treated as an MHD fluid to a reasonable approximation. Magnetic reconnection is
a process by which magnetic field-lines suddenly change their topology. It can give
rise to the rapid conversion of a great deal of magnetic energy into thermal energy, as
well as the acceleration of some charged particles to extremely high energies, and is
thought to be the basic mechanism behind solar flares (Priest 1984; Priest and Forbes
2007)

Third, the creation of the hydrogen bomb in 1952 generated a great deal of in-
terest in controlled thermonuclear fusion as a possible power source for the future
(Fowler 1997). At first, this research was carried out secretly, and independently,
by the United States, the Soviet Union, Great Britain, and France. However, ther-
monuclear fusion research was declassified in 1958, leading to the publication of a
number of immensely important and influential papers in the late 1950s and the early
1960s. Broadly speaking, theoretical plasma physics first emerged as a mathemati-
cally rigorous discipline in these years. Not surprisingly, fusion physicists are mostly
concerned with understanding how a thermonuclear plasma can be trapped—in most
cases by a magnetic field—and investigating the many plasma instabilities that may
allow it to escape (Freidberg 2008).

Fourth, in 1958 James A. Van Allen discovered the so-called Van Allen radia-
tion belts surrounding the Earth, using data transmitted by the US Explorer satellite.
This discovery marked the start of the systematic exploration of the Earth’s magne-
tosphere via satellite observations, and opened up the field of space plasma physics
(Baumjohan and Treumann 1996).

Fifth, the development of high powered lasers in the 1960s opened up the field of
laser plasma physics (Kruer 2003). When a high powered laser beam strikes a solid
target, material is immediately ablated, and a plasma forms at the boundary between
the beam and the target. Laser plasmas tend to have fairly extreme properties (for
instance, densities characteristic of solids) not found in more conventional plasmas.
A major application of laser plasma physics is the approach to fusion energy known
as inertial confinement fusion. In this approach, tightly focused laser beams are used
to implode a small solid target until the densities and temperatures characteristic of
nuclear fusion (which are similar to those at the center of a hydrogen bomb) are
achieved (Atzeni and Meyer-ter-Vehn 2009). Another interesting application of laser
plasma physics is the use of the extremely strong electric fields generated when a
high intensity laser pulse passes through a plasma to accelerate charged particles
(Joshi 2006). High-energy physicists hope to use plasma acceleration techniques to
dramatically reduce the size and cost of particle accelerators.

1.3 FUNDAMENTAL PARAMETERS

Consider an idealized plasma consisting of an equal number of electrons, with mass
me and charge −e (here, e denotes the magnitude of the electron charge), and ions,
with mass mi and charge +e. Without necessarily assuming that the system has
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attained thermal equilibrium, we shall employ the symbol

Ts ≡
1
3

ms 〈v
2
s〉 (1.1)

to denote a kinetic temperature measured in units of energy. Here, v is a particle
speed, and the angular brackets denote an ensemble average (Reif 1965). The kinetic
temperature of species s is a measure of the mean kinetic energy of particles of that
species. (Here, s represents either e for electrons, or i for ions.) In plasma physics,
kinetic temperature is invariably measured in electron-volts (1 joule is equivalent to
6.24 × 1018 eV).

Quasi-neutrality demands that

ni ' ne ≡ n, (1.2)

where ns is the particle number density (that is, the number of particles per cubic
meter) of species s.

Assuming that both ions and electrons are characterized by the same temperature,
T (which is, by no means, always the case in plasmas), we can estimate typical
particle speeds in terms of the so-called thermal speed,

vt s ≡

(
2 T
ms

)1/2

. (1.3)

Incidentally, the ion thermal speed is usually far smaller than the electron thermal
speed. In fact,

vt i ∼

(
me

mi

)1/2

vt e. (1.4)

Of course, n and T are generally functions of position in a plasma.

1.4 PLASMA FREQUENCY

The plasma frequency,

Π =

(
n e2

ε0 m

)1/2

, (1.5)

is the most fundamental timescale in plasma physics. There is a different plasma
frequency for each species. However, the relatively large electron frequency is, by far,
the most important of these, and references to “the plasma frequency” in textbooks
invariably mean the electron plasma frequency.

It is easily seen that Π corresponds to the typical electrostatic oscillation fre-
quency of a given species in response to a small charge separation. For instance,
consider a one-dimensional situation in which a slab (whose bounding planes are
normal to the x-axis) consisting entirely of particles of one species (with charge
e and mass m) is displaced from its quasi-neutral position by an infinitesimal dis-
tance δx (parallel to the x-axis). The resulting charge density that develops on the
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leading face of the slab is σ = e n δx. An equal and opposite charge density devel-
ops on the opposite face. The x-directed electric field generated inside the slab is
Ex = −σ/ε0 = −e n δx/ε0 (Fitzpatrick 2008). Thus, Newton’s second law of motion
applied to an individual particle inside the slab yields

m
d2δx
dt2 = e Ex = −mΠ2 δx, (1.6)

giving δx = (δx)0 cos (Π t).
Plasma oscillations are observed only when the plasma system is studied over

time periods, τ, longer than the plasma period, τp ≡ 2π/Π , and when external in-
fluences modify the system at a rate no faster than Π . In the opposite case, one is
obviously studying something other than plasma physics (for instance, nuclear re-
actions), and the system cannot usefully be considered to be a plasma. Similarly,
observations over lengthscales L shorter than the distance vt τp traveled by a typical
plasma particle during a plasma period will also not detect plasma behavior. In this
case, particles will exit the system before completing a plasma oscillation. This dis-
tance, which is the spatial equivalent to τp, is called the Debye length, and is defined

λD ≡
1
Π

(T
m

)1/2

. (1.7)

It follows that

λD =

(
ε0 T
n e2

)1/2

(1.8)

is independent of mass, and therefore generally comparable for different species.
According to the preceding discussion, our idealized system can usefully be con-

sidered to be a plasma only if
λD

L
� 1, (1.9)

and τp

τ
� 1. (1.10)

Here, τ and L represent the typical timescale and lengthscale of the process under
investigation.

It should be noted that, despite the conventional requirement given in Equa-
tion (1.9), plasma physics is actually capable of describing structures on the Debye
scale (Hazeltine and Waelbroeck 2004). The most important example of this abil-
ity is the theory of the Langmuir sheath, which is the boundary layer that surrounds
a plasma confined by a material surface (Lieberman and Lichtenberg 2005). (See
Section 4.17.)

1.5 DEBYE SHIELDING

Plasmas generally do not contain strong electric fields in their rest frames. The shield-
ing of an external electric field from the interior of a plasma can be viewed as a re-
sult of high plasma conductivity. According to this explanation, electrical current can
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generally flow freely enough through a plasma to short out any interior electric fields.
However, it is more useful to consider the shielding as a dielectric phenomenon. Ac-
cording to this explanation, it is the polarization of the plasma medium, and the asso-
ciated redistribution of space charge, that prevents penetration by an external electric
field. Not surprisingly, the lengthscale associated with such shielding is the Debye
length.

Let us consider the simplest possible example. Suppose that a quasi-neutral
plasma is sufficiently close to thermal equilibrium that the number densities of its
two species are distributed according to the Maxwell-Boltzmann law (Reif 1965),

ns = n0 exp (−es Φ/T ) , (1.11)

where Φ(r) is the electrostatic potential, and n0 and T are constant. From ei = −ee =

e, it is clear that quasi-neutrality requires the equilibrium potential to be zero. Sup-
pose that the equilibrium potential is perturbed, by an amount δΦ(r), as a conse-
quence of a small, localized, perturbing charge density, δρext. The total perturbed
charge density is written

δρ = δρext + e (δni − δne) ' δρext − 2 e2 n0 δΦ/T. (1.12)

Thus, Poisson’s equation yields

∇2δΦ = −
δρ

ε0
= −

(
δρext − 2 e2 n0 δΦ/T

ε0

)
, (1.13)

which reduces to ∇2 −
2
λ2

D

 δΦ = −
δρext

ε0
. (1.14)

If the perturbing charge density actually consists of a point charge q, located at the
origin, so that δρext = q δ(r), then the solution to the previous equation is written

δΦ(r) =
q

4π ε0 r
exp

− √2 r
λD

 . (1.15)

This expression implies that the Coulomb potential of the perturbing point charge
q is shielded over distances longer than the Debye length by a shielding cloud of
approximate radius λD that consists of charge of the opposite sign.

By treating n as a continuous function, the previous analysis implicitly assumes
that there are many particles in the shielding cloud. Actually, Debye shielding re-
mains statistically significant, and physical, in the opposite limit in which the cloud
is barely populated. In the latter case, it is the probability of observing charged par-
ticles within a Debye length of the perturbing charge that is modified (Hazeltine and
Waelbroeck 2004).

1.6 PLASMA PARAMETER

Let us define the average distance between particles,

rd ≡ n−1/3. (1.16)
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We can also define a mean distance of closest approach,

rc ≡
e2

4π ε0 T
, (1.17)

by balancing the one-dimensional thermal energy of a particle against the repulsive
electrostatic potential of a binary pair. In other words,

1
2

m v2
t =

e2

4π ε0 rc
. (1.18)

The significance of the ratio rd/rc is readily understood. If this ratio is small
then charged particles are dominated by one another’s electrostatic influence more
or less continuously, and their kinetic energies are small compared to the interaction
potential energies. Such plasmas are termed strongly coupled. On the other hand, if
the ratio is large then strong electrostatic interactions between individual particles
are occasional, and relatively rare, events. A typical particle is electrostatically influ-
enced by all of the other particles within its Debye sphere, but this interaction very
rarely causes any sudden change in its motion. Such plasmas are termed weakly cou-
pled. It is possible to describe a weakly coupled plasma using a modified Boltzmann
equation (in other words, the same type of equation that is conventionally used to
describe a neutral gas). (See Chapter 3.) Understanding the strongly coupled limit
is far more difficult, and will not be attempted in this book. (Interested readers are
directed to Fortov, Iakubov, and Khrapak 2007.) Actually, a strongly coupled plasma
has more in common with a liquid than a conventional weakly coupled plasma.

Let us define the plasma parameter,

Λ =
4π
3

n λ3
D. (1.19)

This dimensionless parameter is obviously equal to the typical number of particles
contained in a Debye sphere. However, Equations (1.8), (1.16), (1.17), and (1.19) can
be combined to give

Λ =
λD

3 rc
=

1

3
√

4π

(
rd

rc

)3/2

=
4π ε3/2

0

3 e3

T 3/2

n1/2 . (1.20)

It can be seen that the case Λ � 1, in which the Debye sphere is sparsely populated,
corresponds to a strongly coupled plasma. Likewise, the case Λ � 1, in which the
Debye sphere is densely populated, corresponds to a weakly coupled plasma. It can
also be appreciated, from Equation (1.20), that strongly coupled plasmas tend to be
cold and dense, whereas weakly coupled plasmas tend to be diffuse and hot. Exam-
ples of strongly coupled plasmas include solid density laser ablation plasmas, the
very “cold” (i.e., with kinetic temperatures similar to the ionization energy) plasmas
found in “high pressure” arc discharges, and the plasmas that constitute the atmo-
spheres of collapsed objects such as white dwarfs and neutron stars. On the other
hand, the hot diffuse plasmas typically encountered in ionospheric physics, astro-
physics, nuclear fusion, and space plasma physics are invariably weakly coupled.
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Table 1.1 Key parameters for some typical weakly coupled plasmas.

Plasma n(m−3) T (eV) Π(sec−1) λD(m) Λ

Solar wind (1AU) 107 10 2 × 105 7 × 100 5 × 1010

Tokamak 1020 104 6 × 1011 7 × 10−5 4 × 108

Interstellar medium 106 10−2 6 × 104 7 × 10−1 4 × 106

Ionosphere 1012 10−1 6 × 107 2 × 10−3 1 × 105

Inertial confinement 1028 104 6 × 1015 7 × 10−9 5 × 104

Solar chromosphere 1018 2 6 × 1010 5 × 10−6 2 × 103

Arc discharge 1020 1 6 × 1011 7 × 10−7 5 × 102

Table 1.1 lists the key parameters for some typical weakly coupled plasmas. In con-
clusion, characteristic plasma behavior is only observed on timescales longer than
the plasma period, and on lengthscales larger than the Debye length. The statistical
character of this behavior is controlled by the plasma parameter. Although Π , λD,
and Λ are the three most fundamental plasma parameters, there are a number of other
parameters that are worth mentioning.

1.7 COLLISIONS

Collisions between charged particles in a plasma differ fundamentally from those be-
tween molecules in a neutral gas because of the long range of the Coulomb force. In
fact, the discussion in Section 1.6 implies that binary collision processes can only be
defined for weakly coupled plasmas. However, binary collisions in weakly coupled
plasmas are still modified by collective effects, because the many-particle process of
Debye shielding enters in a crucial manner. (See Chapter 3.) Nevertheless, for large Λ
we can speak of binary collisions, and therefore of a collision frequency, denoted by
νss′ . Here, νss′ measures the rate at which particles of species s are scattered by those
of species s′. When specifying only a single subscript, one is generally referring to
the total collision rate for that species, including impacts with all other species. Very
roughly,

νs '
∑

s′
νss′ . (1.21)

The species designations are generally important. For instance, the relatively small
electron mass implies that, for unit ionic charge and comparable species temperatures
[see Equation (1.27)],

νe ∼

(
mi

me

)1/2

νi. (1.22)

The collision frequency, ν, measures the frequency with which a particle trajectory
undergoes a major angular change due to Coulomb interactions with other particles.
Coulomb collisions are, in fact, predominately small angle scattering events, so the
collision frequency is not the inverse of the typical time between collisions. (See
Chapter 3.) Instead, it is the inverse of the typical time needed for enough collisions to
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occur that the particle trajectory is deviated through 90◦. For this reason, the collision
frequency is sometimes termed the 90◦ scattering rate.

It is conventional to define the mean-free-path,

λmfp ≡
vt

ν
. (1.23)

Clearly, the mean-free-path measures the typical distance a particle travels be-
tween “collisions” (i.e., 90◦ scattering events). A collision-dominated, or collisional,
plasma is simply one in which

λmfp � L, (1.24)

where L is the observation lengthscale. The opposite limit of long mean-free-path
is said to correspond to a collisionless plasma. Collisions greatly simplify plasma
behavior by driving the system toward statistical equilibrium, characterized by
Maxwellian distribution functions. (See Section 3.11.) Furthermore, short mean-free-
paths generally ensure that plasma transport is local (i.e., diffusive) in nature, which
is a considerable simplification.

The typical magnitude of the collision frequency is (see Section 3.14)

ν ∼
lnΛ
Λ

Π. (1.25)

Note that ν � Π in a weakly coupled plasma. It follows that collisions do not seri-
ously interfere with plasma oscillations in such systems. On the other hand, Equa-
tion (1.25) implies that ν � Π in a strongly coupled plasma, suggesting that colli-
sions effectively prevent plasma oscillations in such systems. This accords well with
our basic picture of a strongly coupled plasma as a system, dominated by Coulomb
interactions, that does not exhibit conventional plasma dynamics.

Equations (1.7), (1.23), and (1.25) imply that the ratio of the mean-free-path to
the Debye length can be written

λmfp

λD
∼

Λ

lnΛ
. (1.26)

It follows that the mean-free-path is much larger than the Debye length in a weakly
coupled plasma. This is a significant result because the effective range of the inter-
particle force (i.e., the Coulomb force) in a plasma is of approximately the same
magnitude as the Debye length. We conclude that the mean-free-path is much larger
than the effective range of the inter-particle force in a weakly coupled plasma.

Equations (1.5) and (1.20) yield

ν ∼
3 e4 lnΛ

4π ε2
0 m1/2

n
T 3/2 . (1.27)

Thus, diffuse, high temperature plasmas tend to be collisionless, whereas dense, low
temperature plasmas are more likely to be collisional.
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While collisions are crucial to the confinement and dynamics of neutral gases,
they play a far less important role in plasmas. In fact, in many plasmas the magnetic
field effectively plays the role that collisions play in a neutral gas. In such plasmas,
charged particles are constrained from moving perpendicular to the field by their
small Larmor orbits, rather than by collisions. Confinement along the field-lines is
more difficult to achieve, unless the field-lines form closed loops (or closed surfaces).
Thus, it makes sense to talk about a “collisionless plasma”, whereas it makes little
sense to talk about a “collisionless neutral gas”. Many plasmas are collisionless to
a very good approximation, especially those encountered in astrophysics and space
plasma physics contexts.

1.8 MAGNETIZED PLASMAS

A magnetized plasma is one in which the ambient magnetic field, B, is strong enough
to significantly alter particle trajectories. In particular, magnetized plasmas are highly
anisotropic, responding differently to forces that are parallel and perpendicular to
the direction of B. Incidentally, a magnetized plasma moving with mean velocity V
contains an electric field E = −V × B that is not affected by Debye shielding. Of
course, the electric field is essentially zero in the rest frame of the plasma.

As is well known, charged particles respond to the Lorentz force,

F = q v × B, (1.28)

by freely streaming in the direction of B, while executing circular Larmor orbits, or
gyro-orbits, in the plane perpendicular to B (Fitzpatrick 2008). As the field-strength
increases, the resulting helical orbits become more tightly wound, effectively tying
particles to magnetic field-lines.

The typical Larmor radius, or gyroradius, of a charged particle gyrating in a
magnetic field is given by

ρ ≡
vt

Ω
, (1.29)

where
Ω =

eB
m

(1.30)

is the cyclotron frequency, or gyrofrequency, associated with the gyration. As usual,
there is a distinct gyroradius for each species. When species temperatures are com-
parable, the electron gyroradius is distinctly smaller than the ion gyroradius:

ρe ∼

(
me

mi

)1/2

ρi. (1.31)

A plasma system, or process, is said to be magnetized if its characteristic length-
scale, L, is large compared to the gyroradius. In the opposite limit, ρ � L, charged
particles have essentially straight-line trajectories. Thus, the ability of the magnetic
field to significantly affect particle trajectories is measured by the magnetization pa-
rameter,

δ ≡
ρ

L
. (1.32)
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There are some cases of interest in which the electrons are magnetized, but the
ions are not. However, a “magnetized” plasma conventionally refers to one in which
both species are magnetized. This state is generally achieved when

δi ≡
ρi

L
� 1. (1.33)

1.9 PLASMA BETA

The fundamental measure of a magnetic field’s effect on a plasma is the magnetiza-
tion parameter, δ. The fundamental measure of the inverse effect is called β, and is
defined as the ratio of the thermal energy density, n T , to the magnetic energy density,
B2/(2 µ0). It is conventional to identify the plasma energy density with the pressure,

p ≡ n T, (1.34)

as in an ideal gas, and to define a separate βs for each plasma species. Thus,

βs =
2 µ0 ps

B2 . (1.35)

The total β is written
β =

∑
s

βs. (1.36)

1.10 DE BROGLIE WAVELENGTH

Quantum effects become important if the mean inter-particle distance, rd, becomes
comparable, or less than, the de Broglie wavelength,

o ≡
h

m vt
, (1.37)

where h is Planck’s constant. According to Equations (1.3) and (1.16), the condition
rd � o is equivalent to

T 3/2

n
�

h3

(2 m)3/2 . (1.38)

A plasma that satisfies this condition is said to be degenerate, whereas a plasma
that does not is said to be nondegenerate. The behavior of degenerate plasmas is
fundamentally different to that of the nondegenerate plasmas discussed in this book
(because the former plasmas are governed by quantum mechanics, whereas the latter
are governed by classical mechanics). It can be seen that if both species have com-
parable temperatures then the condition, given in Equation (1.38), for degeneracy is
more easily satisfied by the electrons than by the ions. Moreover, it is evident that
degenerate plasmas tend to be cold and dense, whereas nondegenerate plasmas are
generally hot and diffuse. (See Haas 2011 for a comprehensive discussion of degen-
erate plasmas.)
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It is actually possible for quantum effects to modify collisions in nondegenerate
plasmas that satisfy the inequality rd � o. In fact, the criterion for quantum effects
not to modify collisions is rc � o, where rc is the mean distance of closest ap-
proach during collisions. However, it follows from Equation (1.20) that rc ∼ rd/Λ

2/3.
Hence, the criterion for classical collisions becomes rd � Λ2/3 o. In a weakly cou-
pled plasma, for which Λ � 1, this criterion is harder to satisfy that the criterion,
rd � o, for nondegeneracy.

1.11 EXERCISES

1. Consider a quasi-neutral plasma consisting of electrons of mass me, charge
−e, temperature Te, and mean number density, ne, as well as ions of mass mi,
charge Z e, temperature Ti, and mean number density ni = ne/Z.

(a) Generalize the analysis of Section 1.4 to show that the effective plasma
frequency of the plasma can be written

Π =
(
Π2

e + Π2
i

)1/2
,

where Πe = (e2 ne/ε0 me)1/2 and Πi = (Z2 e2 ni/ε0 mi)1/2. Furthermore,
demonstrate that the characteristic ratio of ion to electron displacement
in a plasma oscillation is δxi/δxe = −Z me/mi.

(b) Generalize the analysis of Section 1.5 to show that the effective Debye
length, λD, of the plasma can be written(

1
λD

)2

=
1
2

( 1
λD e

)2

+

(
1
λD i

)2 ,
where λD e = (ε0 Te/ne e2)1/2 and λD i = (ε0 Ti/ni Z2 e2)1/2.

2. The perturbed electrostatic potential δΦ due to a charge q placed at the origin
in a plasma of Debye length λD is governed by∇2 −

2
λ2

D

 δΦ = −
q δ(r)
ε0

.

Show that the nonhomogeneous solution to this equation is

δΦ(r) =
q

4π ε0 r
exp

− √2 r
λD

 .
Demonstrate that the charge density of the shielding cloud is

δρ(r) = −
2 q

4π r λ2
D

exp
− √2 r

λD

 ,
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and that the net shielding charge contained within a sphere of radius r, centered
on the origin, is

Q(r) = −q
1 − 1 +

√
2 r
λD

 exp
− √2 r

λD

 .
3. A quasi-neutral slab of cold (i.e., λD → 0) plasma whose bounding surfaces

are normal to the x-axis consists of electrons of mass me, charge −e, and mean
number density ne, as well as ions of charge e, and mean number density ne.
The ions can effectively be treated as stationary. The slab is placed in an ex-
ternally generated, x-directed electric field that oscillates sinusoidally at the
angular frequency ω. By generalizing the analysis of Section 1.4, show that
the relative dielectric constant of the plasma is

ε = 1 −
Π2

ω2 ,

where Π = (e2 ne/ε0 me)1/2.

4. A capacitor consists of two parallel plates of cross-sectional area A and spacing
d �

√
A. The region between the capacitors is filled with a uniform hot plasma

of Deybe length λD. By generalizing the analysis of Section 1.5, show that the
d.c. capacitance of the device is

C =
ε0 A

d
(d/
√

2 λD)

tanh(d/
√

2 λD)
.

5. A uniform isothermal quasi-neutral plasma with singly-charged ions is placed
in a relatively weak gravitational field of acceleration g = −g ez. Assuming,
first, that both species are distributed according to the Maxwell-Boltzmann
statistics; second, that the perturbed electrostatic potential is a function of z
only; and, third, that the electric field is zero at z = 0 (and well behaved as
z → ∞), demonstrate that the electric field in the region z > 0 takes the form
E = Ez ez, where

Ez(z) = E0

1 − exp
 √2 z
λD

 ,
and

E0 =
mi g

2 e
.

Here, λD is the Debye length, e the magnitude of the electron charge, and mi

the ion mass.

6. Consider a charge sheet of charge density σ immersed in a plasma of unper-
turbed particle number density n0, ion temperature Ti, and electron tempera-
ture Te. Suppose that the charge sheet coincides with the y-z plane. Assuming
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that the (singly-charged) ions and electrons obey Maxwell-Boltzmann statis-
tics, demonstrate that in the limit |eΦ/Ti,e| � 1 the electrostatic potential takes
the form

Φ(x) =
σλD

2 ε0
e−|x|/λD ,

where λD = [(ε0/e2 n0) Ti Te/(Ti + Te)]1/2.

7. Consider the previous exercise again. Let Ti = Te = T . Suppose, however, that
|eΦ/T | is not necessarily much less than unity. Demonstrate that the potential,
V , of the charge sheet (relative to infinity) satisfies

e V
T

= cosh−1
(
1 +

σ2

16 ε0 n0 T

)
.

Furthermore, show that

tanh(eΦ/4 T ) = tanh(e V/4 T ) e−|x|/λD ,

where λD =
√
ε0 T/2 e2 n0. Let xs be the distance from the sheet at which the

potential has fallen to V/e, where ln e = 1. Sketch xs/λD versus e V/T .

8. A long cylinder of plasma of radius a consists of cold (i.e., Ti = Te = 0) singly-
charged ions and electrons with uniform number density n0. The cylinder of
electrons is perturbed a distance δ (where δ � a) in a direction perpendicular
to its axis.

(a) Assuming that the ions are immobile, show that the oscillation frequency
of the electron cylinder is

Π =

(
e2 n0

2 ε0 me

)1/2

,

where me is the electron mass.

(b) Assuming that the ions have the finite mass mi, show that the oscillation
frequency is

Π =

[
e2 n0

2 ε0

(
1

me
+

1
mi

)]1/2

.

9. A sphere of plasma of radius a consists of cold (i.e., Ti = Te = 0) singly-
charged ions and electrons with uniform number density n0. The sphere of
electrons is perturbed a distance δ (where δ � a). Assuming that the ions are
immobile, show that the oscillation frequency of the electron sphere is

Π =

(
e2 n0

3 ε0 me

)1/2

,

where me is the electron mass.



C H A P T E R 2

Charged Particle Motion

2.1 INTRODUCTION

All descriptions of plasma behavior are based, ultimately, on the motions of the con-
stituent particles. For the case of an unmagnetized plasma, the motions are fairly
trivial because the constituent particles move essentially in straight-lines between
collisions. The motions are also trivial in a magnetized plasma in which the collision
frequency, ν, greatly exceeds the gyrofrequency,Ω. In this case, the particles are scat-
tered after executing only a small fraction of a gyro-orbit, and, therefore, still move
essentially in straight-lines between collisions. The situation of primary interest in
this chapter is that of a magnetized, but collisionless (i.e., ν � Ω), plasma, in which
the gyroradius, ρ, is much smaller than the typical variation lengthscale, L, of the E
and B fields, and the gyroperiod, Ω−1, is much less than the typical timescale, τ, on
which these fields change. In such a plasma, we expect the motion of the constituent
particles to consist of a rapid gyration perpendicular to magnetic field-lines, com-
bined with free streaming parallel to the field-lines. We are particularly interested in
calculating how this motion is affected by the spatial and temporal gradients in the E
and B fields. In general, the motion of charged particles in spatially and temporally
nonuniform electromagnetic fields is extremely complicated. However, we hope to
considerably simplify this motion by exploiting the assumed smallness of the param-
eters ρ/L and (Ωτ)−1. What we are essentially trying to understand, in this chapter,
is how the magnetic confinement of a collisionless plasma works at an individual
particle level. The type of collisionless, magnetized plasma investigated here occurs
primarily in magnetic fusion and space plasma physics contexts.

2.2 MOTION IN UNIFORM FIELDS

Let us, first of all, consider the motion of a particle of mass m and charge e in spatially
and temporally uniform electromagnetic fields. The particle’s equation of motion
takes the form

m
dv
dt

= e (E + v × B). (2.1)
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The component of this equation parallel to the magnetic field,

dv‖
dt

=
e
m

E‖, (2.2)

predicts uniform acceleration along magnetic field-lines. Consequently, plasmas
close to equilibrium generally have either small or vanishing E‖.

As can easily be verified by substitution, the perpendicular (to the magnetic field)
component of Equation (2.1) yields

v⊥ =
E × B

B2 + ρΩ
[
sin(Ω t + γ0) e1 + cos(Ω t + γ0) e2

]
, (2.3)

where Ω = eB/m is the gyrofrequency, ρ is the gyroradius, e1 and e2 are unit vectors
such that e1, e2, B form a right handed, mutually orthogonal set, and γ0 is the parti-
cle’s initial gyrophase. The motion consists of gyration around the magnetic field at
the frequency Ω, superimposed on a steady drift with velocity

vE =
E × B

B2 . (2.4)

This drift, which is termed the E-cross-B drift, is identical for all plasma species, and
can be eliminated entirely by transforming to a new inertial frame in which E⊥ = 0.
This frame, which moves with velocity vE with respect to the old frame, can properly
be regarded as the rest frame of the plasma.

We can complete the previous solution by integrating the velocity to find the
particle position. Thus,

r(t) = R(t) + ρ(t), (2.5)

where
ρ(t) = ρ [− cos(Ω t + γ0) e1 + sin(Ω t + γ0) e2], (2.6)

and

R(t) =

(
v0 ‖ t +

e
m

E‖
t2

2

)
b + vE t. (2.7)

Here, b ≡ B/B. Of course, the trajectory of the particle describes a spiral. The gyro-
center, R, of this spiral, which is termed the guiding center, drifts across the magnetic
field with the velocity vE , and also accelerates along field-lines at a rate determined
by the parallel electric field.

The concept of a guiding center gives us a clue as how to proceed. Perhaps,
when analyzing charged particle motion in nonuniform electromagnetic fields, we
can somehow neglect the rapid, and relatively uninteresting, gyromotion, and focus,
instead, on the far slower motion of the guiding center? In order to achieve this goal,
we need to somehow average the equation of motion over gyrophase, so as to obtain
a reduced equation of motion for the guiding center.
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2.3 METHOD OF AVERAGING

In many dynamical problems, the motion consists of a rapid oscillation superimposed
on a slow secular drift. For such problems, the most efficient approach is to describe
the evolution in terms of the average values of the dynamical variables. The method
outlined below is adapted from a classic paper by Morozov and Solov’ev (Morozov
and Solev’ev 1966; Hazeltine and Waelbroeck 2004).

Consider the equation of motion

dz
dt

= f(z, t, τ), (2.8)

where f is a periodic function of its last argument, with period 2π, and

τ = t/ε. (2.9)

Here, the small parameter ε characterizes the separation between the short oscillation
period and the timescale for the slow secular evolution of the “position” z.

The basic idea of the averaging method is to treat t and τ as distinct independent
variables, and to look for solutions of the form z(t, τ) that are periodic in τ. Thus, we
replace Equation (2.8) by

∂z
∂t

+
1
ε

∂z
∂τ

= f(z, t, τ), (2.10)

and reserve Equation (2.9) for substitution into the final result. The indeterminacy
introduced by increasing the number of variables is lifted by the requirement of peri-
odicity in τ. All of the secular drifts are thereby attributed to the variable t, while the
oscillations are described entirely by the variable τ.

Let us denote the τ-average of z by Z, and seek a change of variables of the form

z(t, τ) = Z(t) + ε ζ(Z, t, τ). (2.11)

Here, ζ is a periodic function of τ with vanishing mean. Thus,

〈ζ(Z, t, τ)〉 ≡
1

2π

∮
ζ(Z, t, τ) dτ = 0, (2.12)

where
∮

denotes the integral over a full period in τ.
The evolution of Z is determined by substituting the expansions

ζ = ζ0(Z, t, τ) + ε ζ1(Z, t, τ) + ε2 ζ2(Z, t, τ) + · · · , (2.13)

dZ
dt

= F0(Z, t) + ε F1(Z, t) + ε2 F2(Z, t) + · · · , (2.14)

into the equation of motion, Equation (2.10), and solving order by order in ε.
To lowest order, we obtain

F0(Z, t) +
∂ζ0

∂τ
= f(Z, t, τ). (2.15)
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The solubility condition for this equation is

F0(Z, t) = 〈f(Z, t, τ)〉 ≡ 〈f〉(Z, t). (2.16)

Integrating the oscillating component of Equation (2.15) yields

ζ0(Z, t, τ) =

∫ τ

0

[
f(Z, t, τ′) − 〈f〉(Z, t)

]
dτ′. (2.17)

To first order, Equation (2.10) gives,

F1 +
∂ζ0

∂t
+ F0 · ∇ζ0 +

∂ζ1

∂τ
= ζ0 · ∇f(Z, t, τ). (2.18)

The solubility condition for this equation yields

F1(Z, t) = 〈ζ0(Z, t, τ) · ∇f(Z, t, τ)〉 ≡ 〈ζ0 · ∇f〉(Z, t). (2.19)

The final result is obtained by combining Equations (2.14), (2.16), and (2.19):

dZ
dt

= 〈f〉(Z, t) + ε 〈ζ0 · ∇f〉(Z, t) + O(ε2). (2.20)

Evidently, the secular motion of the “guiding center” position Z is determined to
lowest order by the average of the “force” f, and to next order by the correlation
between the oscillation in the “position” z and the oscillation in the spatial gradient
of the “force.”

2.4 GUIDING CENTER MOTION

Consider the motion of a charged particle of mass m and charge e in the limit in
which the electromagnetic fields experienced by the particle do not vary much in a
gyroperiod, so that

ρ |∇B| � B, (2.21)

1
Ω

∂B
∂t
� B. (2.22)

The electric force is assumed to be comparable to the magnetic force. To keep track
of the order of the various quantities, we introduce the parameter ε as a book-keeping
device, and make the substitution ρ→ ε ρ, as well as (E, B, Ω)→ ε−1(E, B, Ω). The
parameter ε is set to unity in the final answer.

In order to make use of the technique described in the previous section, we write
the dynamical equations in the first-order differential form,

dr
dt

= v, (2.23)

dv
dt

=
e
ε m

(E + v × B), (2.24)
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and seek a change of variables (Hazeltine and Waelbroeck 2004),

r = R(t) + ε ρ(R,U, t, γ), (2.25)

v = U(t) + u(R,U, t, γ), (2.26)

such that the new guiding center variables R and U are free of oscillations along
the particle trajectory. Here, γ is a new independent variable describing the phase
of the gyrating particle. The functions ρ and u represent the gyration radius and
velocity, respectively. We require periodicity of these functions with respect to their
last argument, with period 2π, and with vanishing mean, so that

〈ρ〉 = 〈u〉 = 0. (2.27)

Here, the angular brackets refer to the average over a period in γ.
The equation of motion is used to determine the coefficients in the following

expansion of ρ and u (Hazeltine and Waelbroeck 2004):

ρ = ρ0(R,U, t, γ) + ε ρ1(R,U, t, γ) + · · · , (2.28)

u = u0(R,U, t, γ) + ε u1(R,U, t, γ) + · · · . (2.29)

The dynamical equation for the gyrophase is likewise expanded, assuming that
dγ/dt ' Ω = O(ε−1),

dγ
dt

= ε−1 ω−1(R,U, t) + ω0(R,U, t) + · · · . (2.30)

In the following, we suppress the subscripts on all quantities except the guiding cen-
ter velocity U, because this is the only quantity for which the first-order corrections
are calculated.

To each order in ε, the evolution of the guiding center position, R, and velocity,
U, are determined by the solubility conditions for the equations of motion, Equa-
tions (2.23) and (2.24), when expanded to that order. The oscillating components
of the equations of motion determine the evolution of the gyrophase. The velocity
equation, Equation (2.23), is linear. It follows that, to all orders in ε, its solubility
condition is simply

dR
dt

= U. (2.31)

To lowest order [that is,O(ε−1)], the momentum equation, Equation (2.24), yields

ω
∂u
∂γ
− Ω u × b =

e
m

(E + U0 × B) . (2.32)

The solubility condition (that is, the gyrophase average) is

E + U0 × B = 0. (2.33)

This immediately implies that

E‖ ≡ E · b ∼ ε E. (2.34)
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In other words, the rapid acceleration caused by a large parallel electric field would
invalidate the ordering assumptions used in this calculation. Solving for U0, we ob-
tain

U0 = U0 ‖ b + vE , (2.35)

where all quantities are evaluated at the guiding center position, R. The perpendicular
component of the velocity, vE , has the same form—namely, Equation (2.4)—as that
obtained for uniform fields. The parallel velocity, U0 ‖, is undetermined at this order.

The integral of the oscillating component of Equation (2.32) yields

u = c + u⊥
[
sin (Ωγ/ω) e1 + cos (Ωγ/ω) e2

]
, (2.36)

where c is a constant vector, and e1 and e2 are again mutually orthogonal unit vectors
perpendicular to b. All quantities in the previous equation are functions of R, U,
and t. The periodicity constraint, combined with Equation (2.27), requires that ω =

Ω(R, t) and c = 0. The gyration velocity is thus

u = u⊥ (sin γ e1 + cos γ e2) , (2.37)

and, from Equation (2.30), the gyrophase is given by

γ = γ0 + Ω t, (2.38)

where γ0 is the initial gyrophase. The amplitude, u⊥, of the gyration velocity is un-
determined at this order.

The lowest order oscillating component of the velocity equation, Equation (2.23),
yields

Ω
∂ρ

∂γ
= u. (2.39)

This is readily integrated to give

ρ = ρ (− cos γ e1 + sin γ e2), (2.40)

where ρ = u⊥/Ω. It follows that

u = Ω ρ × b. (2.41)

The gyrophase average of the first-order [that is, O(ε0)] momentum equation,
Equation (2.24), reduces to

dU0

dt
=

e
m

[
E‖ b + U1 × B + 〈u × (ρ · ∇) B〉

]
. (2.42)

All quantities in the previous expression are functions of the guiding center position,
R, rather than the instantaneous particle position, r. In order to evaluate the last term,
we make the substitution u = Ω ρ × b, and calculate

〈(ρ × b) × (ρ · ∇) B〉 = b 〈ρ · (ρ · ∇) B〉 − 〈ρ b · (ρ · ∇) B〉

= b 〈ρ · (ρ · ∇) B〉 − 〈ρ (ρ · ∇B)〉. (2.43)
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The averages are specified by

〈ρρ〉 =
u2
⊥

2Ω2 (I − bb), (2.44)

where I is the identity tensor. Thus, making use of I : ∇B = ∇ ·B = 0, it follows that

−e 〈u × (ρ · ∇) B〉 =
m u2

⊥

2 B
∇B. (2.45)

This quantity is the secular component of the gyration induced fluctuations in the
magnetic force acting on the particle.

The coefficient of ∇B in the previous equation,

µ =
m u2

⊥

2 B
, (2.46)

plays a central role in the theory of magnetized particle motion. We can interpret this
coefficient as a magnetic moment by drawing an analogy between a gyrating particle
and a current loop. The (vector) magnetic moment of a plane current loop is simply

µ = I A n, (2.47)

where I is the current, A the area of the loop, and n the unit normal to the surface of
the loop. For a circular loop of radius ρ = u⊥/Ω, lying in the plane perpendicular to
b, and carrying the current eΩ/2π, we find

µ = I π ρ2 b =
m u2

⊥

2 B
b. (2.48)

We shall demonstrate, in Section 2.6, that the (scalar) magnetic moment, µ, is a con-
stant of the particle motion. Thus, the guiding center behaves exactly like a particle
with a conserved magnetic moment µ that is always aligned with the magnetic field.

The first-order guiding center equation of motion, Equation (2.42), reduces to

m
dU0

dt
= e E‖ b + e U1 × B − µ∇B. (2.49)

The component of this equation along the magnetic field determines the evolution of
the parallel guiding center velocity:

m
dU0 ‖

dt
= e E‖ − µ · ∇B − m b ·

dvE

dt
. (2.50)

Here, use has been made of Equation (2.35), and b · db/dt = 0. The component of
Equation (2.49) perpendicular to the magnetic field determines the first-order per-
pendicular drift velocity:

U1⊥ =
b
Ω
×

(
dU0

dt
+
µ

m
∇B

)
. (2.51)
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The first-order correction to the parallel velocity, the so-called first-order parallel
drift velocity, is undetermined to this order. This is not a problem, because the first-
order parallel drift is a small correction to a type of motion that already exists at
zeroth order, whereas the first-order perpendicular drift is a completely new type of
motion. In particular, the first-order perpendicular drift differs fundamentally from
the E × B drift, because it is not the same for all species, and, therefore, cannot be
eliminated by transforming to a new inertial frame. Thus, without loss of generality,
we can absorb the first-order parallel drift into U0 ‖, and write U1 = U1⊥.

We can now understand the motion of a charged particle as it moves through
slowly varying electric and magnetic fields. The particle always gyrates around the
magnetic field at the local gyrofrequency, Ω = eB/m. The local perpendicular gy-
ration velocity, u⊥, is determined by the requirement that the magnetic moment,
µ = m u2

⊥/(2 B), be a constant of the motion. This, in turn, fixes the local gyroradius,
ρ = u⊥/Ω. The parallel velocity of the particle is determined by Equation (2.50).
Finally, the perpendicular drift velocity is the sum of the E×B drift velocity, vE , and
the first-order drift velocity, U1⊥.

2.5 MAGNETIC DRIFTS

Equations (2.35) and (2.51) can be combined to give

U1⊥ =
µ

mΩ
b × ∇B +

U0 ‖

Ω
b ×

db
dt

+
b
Ω
×

dvE

dt
. (2.52)

The three terms on the right-hand side of the previous expression are conventionally
called the grad-B drift, the inertial drift, and the polarization drift, respectively.

The grad-B drift,
Ugrad =

µ

mΩ
b × ∇B, (2.53)

is caused by the slight variation of the gyroradius with gyrophase as a charged par-
ticle rotates in a nonuniform magnetic field. The gyroradius is reduced on the high-
field side of the Larmor orbit, whereas it is increased on the low-field side. The net
result is that the orbit does not quite close on itself. In fact, the motion consists of the
conventional gyration around the magnetic field combined with a slow drift that is
perpendicular to both the local direction of the magnetic field and the local gradient
of the field-strength.

Given that, to lowest order,

db
dt

=
∂b
∂t

+ U0 · ∇b =
∂b
∂t

+ (vE · ∇) b + U0 ‖ (b · ∇) b, (2.54)

the inertial drift can be written

Uint =
U0 ‖

Ω
b ×

[
∂b
∂t

+ (vE · ∇) b
]

+
U2

0 ‖

Ω
b × (b · ∇) b. (2.55)
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In the important limit of stationary magnetic fields, and weak electric fields, the pre-
vious expression is dominated by the final term,

Ucurv =
U2

0 ‖

Ω
b × (b · ∇) b, (2.56)

which is called the curvature drift. As is easily demonstrated, the quantity (b · ∇) b is
a vector that is directed toward the center of the circle that most closely approximates
the magnetic field-line at a given point, and whose magnitude is the inverse of the
radius of this circle. Thus, the centripetal acceleration imposed by the curvature of
the magnetic field on a charged particle following a field-line gives rise to a slow drift
that is perpendicular to both the local direction of the magnetic field and the direction
to the local center of curvature of the field.

The polarization drift,

Upolz =
b
Ω
×

dvE

dt
, (2.57)

reduces to

Upolz =
1
Ω

d
dt

(
E⊥
B

)
(2.58)

in the limit in which the magnetic field is stationary, but the electric field varies in
time. This expression can be understood as a polarization drift by considering what
happens when we suddenly impose an electric field on a particle at rest. The parti-
cle initially accelerates in the direction of the electric field, but is then deflected by
the magnetic force. Thereafter, the particle undergoes conventional gyromotion com-
bined with E×B drift. The time between the switch-on of the field and the magnetic
deflection is approximately ∆t ∼ Ω−1. There is no deflection if the electric field is
directed parallel to the magnetic field, so this argument only applies to perpendicular
electric fields. The initial displacement of the particle in the direction of the field is
of order

δ ∼
e E⊥

m
(∆t)2 ∼

E⊥
Ω B

. (2.59)

Because Ω ∝ m−1, the displacement of the ions greatly exceeds that of the electrons.
Thus, when an electric field is suddenly switched on in a plasma, there is an initial
polarization of the plasma medium caused, predominately, by a displacement of the
ions in the direction of the field. If the electric field, in fact, varies continuously in
time then there is a slow drift due to the constantly changing polarization of the
plasma medium. This drift is essentially the time derivative of Equation (2.59) [in
other words, Equation (2.58)].

2.6 INVARIANCE OF MAGNETIC MOMENT

Let us now demonstrate that the magnetic moment, µ = m u2
⊥/(2 B), is indeed a

constant of the motion, at least to lowest order. The scalar product of the equation of
motion, Equation (2.24), with the velocity v yields

m
2

dv2

dt
= e v · E. (2.60)
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This equation governs the evolution of the particle energy during its motion. Let us
make the substitution v = U + u, as before, and then average the preceding equation
over gyrophase. To lowest order, we obtain

m
2

d
dt

(u2
⊥ + U2

0) = e U0 ‖ E‖ + e U1 · E + e 〈u · (ρ · ∇) E〉. (2.61)

Here, use has been made of the result

d
dt
〈 f 〉 =

〈
d f
dt

〉
, (2.62)

which is valid for any f . The final term on the right-hand side of Equation (2.61) can
be written

eΩ 〈(ρ × b) · (ρ · ∇) E〉 = −µb · ∇ × E = µ ·
∂B
∂t

= µ
∂B
∂t
, (2.63)

where use has been made of Equation (2.44). Thus, Equation (2.61) reduces to

dK
dt

= e U · E + µ ·
∂B
∂t

= e U · E + µ
∂B
∂t
. (2.64)

Here, U is the guiding center velocity, evaluated to first order, and

K =
m
2

(U2
0 ‖ + v2

E + u2
⊥) (2.65)

is the lowest order kinetic energy of the particle. Evidently, the kinetic energy can
change in one of two different ways. First, by motion of the guiding center along the
direction of the electric field, and, second, by acceleration of the gyration due to the
electromotive force generated around the Larmor orbit by a changing magnetic field.

Equation (2.64) yields

m U0 ‖
dU0 ‖

dt
+ m vE ·

dvE

dt
+

d(Bµ)
dt

= e U0 ‖ E‖ + e U1 · E + µ
∂B
dt
. (2.66)

It follows from Equation (2.50) that

−m U0 ‖ b ·
dvE

dt
+ m vE ·

dvE

dt
+ B

dµ
dt

+ µ vE · ∇B = e U1 · E, (2.67)

where use has been made of dB/dt = ∂B/∂t + U0 ‖ b · ∇B + vE · ∇B. However,
U1 = U1⊥. Moreover, according to Equations (2.4), (2.35), and (2.51),

e U1 · E = m vE ·

[
d
dt

(U0 ‖ b + vE) +
µ

m
∇B

]
. (2.68)

Hence, Equation (2.67) reduces to

B
dµ
dt

= m
d
dt

(
U0 ‖ vE · b

)
= 0, (2.69)
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which implies that
dµ
dt

=
d
dt

(
m u2

⊥

2 B

)
= 0. (2.70)

Thus, to lowest order, the magnetic moment, µ, is a constant of the motion. Kruskal
has shown that m u2

⊥/(2 B) is, in fact, the lowest order approximation to a quantity
that is a constant of the motion to all orders in the perturbation expansion (Kruskal
1962). Such a quantity is termed an adiabatic invariant.

2.7 POINCARÉ INVARIANTS

An adiabatic invariant is an approximation to a more fundamental type of invariant
known as a Poincaré invariant (Hazeltine and Waelbroeck 2004). A Poincaré invari-
ant takes the form

I =

∮
C(t)

p · dq, (2.71)

where all points on the closed curve C(t) in phase-space move according to the equa-
tions of motion.

In order to demonstrate that I is a constant of the motion, we introduce a periodic
variable s parameterizing the points on the curve C. The coordinates of a general
point on C are thus written qi = qi(s, t) and pi = pi(s, t). The rate of change of I is
then

dI
dt

=

∮ (
pi
∂2qi

∂t ∂s
+
∂pi

∂t
∂qi

∂s

)
ds. (2.72)

Let us integrate the first term by parts, and then use Hamilton’s equations of motion
to simplify the result (Goldstein, Poole, and Safko 2002). We obtain

dI
dt

=

∮ (
−
∂qi

∂t
∂pi

∂s
+
∂pi

∂t
∂qi

∂s

)
ds = −

∮ (
∂H
∂pi

∂pi

∂s
+
∂H
∂qi

∂qi

∂s

)
ds, (2.73)

where H(p,q, t) is the Hamiltonian for the motion. The integrand is now seen to
be the total derivative of H along C. Because the Hamiltonian is a single-valued
function, it follows that

dI
dt

= −

∮
dH
ds

ds = 0. (2.74)

Thus, I is indeed a constant of the motion.

2.8 ADIABATIC INVARIANTS

Poincaré invariants are generally of little practical interest unless the curve C closely
corresponds to the trajectories of actual particles. For the motion of magnetized par-
ticles, it is evident from Equations (2.25), (2.38), and (2.40) that points having the
same guiding center at a certain time will continue to have approximately the same
guiding center at later times. An approximate Poincaré invariant may thus be ob-
tained by choosing the curve C to be a circle of points corresponding to a gyrophase
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period. In other words,

I ' I =

∮
p ·

∂q
∂γ

dγ. (2.75)

Here, I is an adiabatic invariant.
To evaluate I for a magnetized plasma recall that the canonical momentum for

charged particles is (Jackson 1998)

p = m v + e A, (2.76)

where A is the vector potential. Let us express A in terms of its Taylor series about
the guiding center position:

A(r) = A(R) + (ρ · ∇) A(R) + O(ρ2). (2.77)

The element of length along the curve C(t) is [see Equation (2.39)]

dr =
∂ρ

∂γ
dγ =

u
Ω

dγ. (2.78)

The adiabatic invariant is thus

I =

∮
u
Ω
·
(
m [U + u] + e

[
A + (ρ · ∇) A

])
dγ + O(ε), (2.79)

which reduces to

I = 2πm
u2
⊥

Ω
+ 2π

e
Ω
〈u · (ρ · ∇) A〉 + O(ε). (2.80)

The final term on the right-hand side is written [see Equations (2.41) and (2.44)]

2π e 〈(ρ × b) · (ρ · ∇) A〉 = −2π e
u2
⊥

2Ω2 b · ∇ × A = −πm
u2
⊥

Ω
. (2.81)

It follows that
I = 2π

m
e
µ + O(ε). (2.82)

Thus, to lowest order, the adiabatic invariant is proportional to the magnetic moment,
µ.

2.9 MAGNETIC MIRRORS

Consider the important case in which the electromagnetic fields do not vary in time. It
follows that E = −∇Φ, where Φ is the electrostatic potential. Equation (2.64) yields

dK
dt

= −e U · ∇Φ = −
d(eΦ)

dt
, (2.83)

because d/dt = ∂/∂t + U · ∇. Thus, we obtain

dE
dt

= 0, (2.84)
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where
E = K + eΦ =

m
2

(U2
‖ + v2

E) + µ B + eΦ (2.85)

is the lowest order total particle energy. Not surprisingly, a charged particle neither
gains nor loses energy as it moves around in nontime-varying electromagnetic fields.
Because E and µ are constants of the motion, we can rearrange Equation (2.85) to
give

U‖ = ±
[
(2/m) (E − µ B − eΦ) − v2

E

]1/2
. (2.86)

Thus, charged particles can drift in either direction along magnetic field-lines in re-
gions where E > µ B + eΦ + m v2

E/2. However, particles are excluded from regions
where E < µ B + eΦ + m v2

E/2 (because they cannot have imaginary parallel veloci-
ties). Evidently, charged particles must reverse direction at those points on magnetic
field-lines where E = µ B + eΦ + m v2

E/2. Such points are termed bounce points or
mirror points.

Let us now consider how we might construct a device to confine a collisionless (in
other words, very high temperature) plasma. Obviously, we cannot use conventional
solid walls, because they would melt. However, it is possible to confine a hot plasma
using a magnetic field (fortunately, magnetic field-lines cannot melt). This technique
is called magnetic confinement. The electric field in confined plasmas is usually weak
(that is, E � B v), so that the E × B drift is similar in magnitude to the magnetic and
curvature drifts. In this case, the bounce point condition, U‖ = 0, reduces to

E = µ B. (2.87)

Consider the magnetic field configuration illustrated in Figure 2.1. As indicated, this
configuration is most easily produced by two Helmholtz coils. Incidentally, this type
of magnetic confinement device is called a magnetic mirror machine. The magnetic
field configuration obviously possesses axial symmetry. Let z be a coordinate that
measures distance along the axis of symmetry. Suppose that z = 0 corresponds to the
midplane of the device (that is, halfway between the two field-coils).

It is clear, from the figure, that the magnetic field-strength B(z) on a magnetic
field-line situated close to the axis of the device attains a local minimum Bmin at z =

0, increases symmetrically as |z| increases until reaching a maximum value Bmax at
about the locations of the two field-coils, and then decreases as |z| is further increased.
According to Equation (2.87), any particle that satisfies the inequality

µ > µtrap =
E

Bmax
(2.88)

is trapped on such a field-line. In fact, the particle undergoes periodic motion along
the field-line between two symmetrically placed (in z) mirror points. The magnetic
field-strength at the mirror points is

Bmirror =
µtrap

µ
Bmax < Bmax. (2.89)

On the midplane, µ = m v2
⊥/(2 Bmin) and E = m (v2

‖
+ v2

⊥)/2. (From now on,
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magnetic field-line

Helmholtz coils

midplane

Figure 2.1 Schematic cross-section of a magnetic mirror machine employing two
Helmholtz coils.

for ease of notation, we shall write v = v‖ b + v⊥.) Thus, the trapping condition,
Equation (2.88), reduces to

|v‖|

|v⊥|
< (Bmax/Bmin − 1)1/2. (2.90)

Particles on the midplane that satisfy this inequality are trapped. On the other
hand, particles that do not satisfy the inequality escape along magnetic field-lines. A
magnetic mirror machine is incapable of trapping charged particles that are moving
parallel, or nearly parallel, to the direction of the magnetic field. In fact, the previous
inequality defines a loss cone in velocity space. (See Figure 2.2.)

If plasma is placed inside a magnetic mirror machine then all of the particles
whose velocities lie in the loss cone promptly escape, but the remaining particles are
confined. Unfortunately, that is not the end of the story. There is no such thing as an
absolutely collisionless plasma. Collisions take place at a low rate, even in very hot
plasmas. One important effect of collisions is to cause diffusion of particles in ve-
locity space (Hazeltine and Waelbroeck 2004). Thus, collisions in a mirror machine
continuously scatter trapped particles into the loss cone, giving rise to a slow leak-
age of plasma out of the device. Even worse, plasmas whose distribution functions
deviate strongly from an isotropic Maxwellian (for instance, a plasma confined in a
mirror machine) are prone to velocity-space instabilities (see Chapter 7) that tend to
relax the distribution function back to a Maxwellian. Such instabilities can have a
disastrous effect on plasma confinement in a mirror machine.
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vy

vz

vx

Figure 2.2 A loss cone in velocity space. Particles whose velocity vectors lie inside
the cone are not reflected by the magnetic field.

2.10 VAN ALLEN RADIATION BELTS

Plasma confinement via magnetic mirroring occurs in nature. For instance, the Van
Allen radiation belts, which surround the Earth, consist of energetic particles trapped
in the Earth’s dipole-like magnetic field. These belts were discovered by James
A. Van Allen and co-workers using data taken from Geiger counters that flew on the
early US satellites, Explorer 1 (which was, in fact, the first US satellite), Explorer 4,
and Pioneer 3. Van Allen was actually trying to measure the flux of cosmic rays
(high energy particles whose origin is outside the solar system) in outer space, to see
if it was similar to that measured on Earth. However, the flux of energetic particles
detected by his instruments so greatly exceeded the expected value that it prompted
one of his co-workers, Ernie Ray, to exclaim, “My God, space is radioactive!” (Hess
1968). It was quickly realized that this flux was due to energetic particles trapped in
the Earth’s magnetic field, rather than to cosmic rays.

There are, in fact, two radiation belts surrounding the Earth (Baumjohan and
Treumann 1996). The inner belt, which extends from about 1–3 Earth radii in the
equatorial plane, is mostly populated by protons with energies exceeding 10 MeV.
The origin of these protons is thought to be the decay of neutrons that are emitted
from the Earth’s atmosphere as it is bombarded by cosmic rays. The inner belt is
fairly quiescent. Particles eventually escape due to collisions with neutral atoms in
the upper atmosphere above the Earth’s poles. However, such collisions are suffi-
ciently uncommon that the lifetime of particles in the inner belt range from a few
hours to 10 years. Obviously, with such long trapping times, only a small input rate
of energetic particles is required to produce a region of intense radiation.

The outer belt, which extends from about 3–9 Earth radii in the equatorial plane,
consists mostly of electrons with energies below 10 MeV. These electrons originate
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via injection from the outer magnetosphere. Unlike the inner belt, the outer belt is
very dynamic, changing on timescales of a few hours in response to perturbations
emanating from the outer magnetosphere.

In regions not too far distant (that is, less than 10 Earth radii) from the Earth, the
geomagnetic field can be approximated as a dipole field (see Figure 2.4),

B =
µ0

4π
ME

r3 (−2 cos θ,− sin θ, 0), (2.91)

where we have adopted conventional spherical coordinates (r, θ, ϕ) aligned with the
Earth’s dipole moment, whose magnitude is ME = 8.05×1022 A m2 (Baumjohan and
Treumann 1996). It is convenient to work in terms of the latitude, ϑ = π/2− θ, rather
than the polar angle, θ. An individual magnetic field-line satisfies the equation

r = req cos2 ϑ, (2.92)

where req is the radial distance to the field-line in the equatorial plane (ϑ = 0◦). It
is conventional to label field-lines using the L-shell parameter, L = req/RE . Here,
RE = 6.37 × 106 m is the Earth’s radius (Yoder 1995). Thus, the variation of the
magnetic field-strength along a field-line characterized by a given L-value is

B =
BE

L3

(1 + 3 sin2 ϑ)1/2

cos6 ϑ
, (2.93)

where BE = µ0ME/(4πR3
E) = 3.11 × 10−5 T is the equatorial magnetic field-strength

on the Earth’s surface (Baumjohan and Treumann 1996).
Consider, for the sake of simplicity, charged particles located on the equatorial

plane (ϑ = 0◦) whose velocities are predominately directed perpendicular to the
magnetic field. The proton and electron gyrofrequencies are written1

Ωp =
e B
mp

= 2.98 L−3 kHz, (2.94)

and
|Ωe| =

e B
me

= 5.46 L−3 MHz, (2.95)

respectively. The proton and electron gyroradii, expressed as fractions of the Earth’s
radius, take the form

ρp

RE
=

√
2Emp

e B RE
=

√
E(MeV)

( L
11.1

)3

, (2.96)

and
ρe

RE
=

√
2Eme

e B RE
=

√
E(MeV)

( L
38.9

)3

, (2.97)

1It is conventional to take account of the negative charge of electrons by making the electron gyrofre-
quency Ωe negative. This approach is implicit in formulae such as Equation (2.52).
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respectively. Thus, MeV energy charged particles in the inner magnetosphere (that
is, L � 10) gyrate at frequencies that are much greater than the typical rate of change
of the magnetic field (which varies on timescales that are, at most, a few minutes).
Likewise, the gyroradii of such particles are much smaller than the typical variation
lengthscale of the magnetospheric magnetic field. Under these circumstances, we
expect the magnetic moment to be a conserved quantity. In other words, we expect the
magnetic moment to be a good adiabatic invariant. It immediately follows that any
MeV energy protons and electrons in the inner magnetosphere that have a sufficiently
large magnetic moment are trapped on the dipolar field-lines of the Earth’s magnetic
field, bouncing back and forth between mirror points located just above the Earth’s
poles.

It is helpful to define the pitch-angle,

α = tan−1(v⊥/v‖), (2.98)

of a charged particle in the magnetosphere. If the magnetic moment is a conserved
quantity then a particle of fixed energy drifting along a field-line satisfies

sin2 α

sin2 αeq
=

B
Beq

, (2.99)

where αeq is the equatorial pitch-angle (that is, the pitch-angle on the equatorial
plane), and Beq = BE/L3 is the magnetic field-strength on the equatorial plane. Ac-
cording to Equation (2.93), the pitch-angle increases (i.e., the parallel component of
the particle velocity decreases) as the particle drifts off the equatorial plane toward
the Earth’s poles.

The mirror points correspond to α = 90◦ (i.e., v‖ = 0). It follows from Equa-
tions (2.93) and (2.99) that

sin2 αeq =
Beq

Bm
=

cos6 ϑm

(1 + 3 sin2 ϑm)1/2
, (2.100)

where Bm is the magnetic field-strength at the mirror points, and ϑm the latitude of
the mirror points. It can be seen that the latitude of a particle’s mirror point depends
only on its equatorial pitch-angle, and is independent of the L-value of the field-line
on which it is trapped.

Charged particles with large equatorial pitch-angles have small parallel veloci-
ties, and mirror points located at relatively low latitudes. Conversely, charged par-
ticles with small equatorial pitch-angles have large parallel velocities, and mirror
points located at high latitudes. Of course, if the pitch-angle becomes too small then
the mirror points enter the Earth’s atmosphere, and the particles are lost via collisions
with neutral particles. Neglecting the thickness of the atmosphere with respect to the
radius of the Earth, we can say that all particles whose mirror points lie inside the
Earth are lost via collisions. It follows from Equation (2.100) that the equatorial loss
cone is of approximate width

sin2 αl =
cos6 ϑE

(1 + 3 sin2 ϑE)1/2
, (2.101)
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where ϑE is the latitude of the point at which the magnetic field-line under investiga-
tion intersects the Earth. All particles with |αeq| < αl and |π − αeq| < αl lie in the loss
cone. According to Equation (2.92),

cos2 ϑE = L−1. (2.102)

It follows that
sin2 αl =

(
4 L6 − 3 L5

)−1/2
. (2.103)

Thus, the width of the loss cone is independent of the charge, the mass, or the energy
of the particles drifting along a given field-line, and is a function only of the field-line
radius on the equatorial plane. The loss cone is surprisingly small. For instance, at
the radius of a geostationary satellite orbit (6.6 RE), the loss cone is less than 3◦ wide.
The smallness of the loss cone is a consequence of the very strong variation of the
magnetic field-strength along field-lines in a dipole field. [See Equations (2.90) and
(2.93).]

The bounce period, τb, is the time it takes a charged particle to move from the
equatorial plane to one mirror point, through the equatorial plane to the other mirror
point, and then back to the equatorial plane. It follows that

τb = 4
∫ ϑm

0

dϑ
|v‖|

ds
dϑ
, (2.104)

where ds is an element of arc-length along the field-line under investigation, and
|v‖| = v (1 − B/Bm)1/2. The previous integral cannot be performed analytically. How-
ever, it can be solved numerically, and is conveniently approximated as (Baumjohan
and Treumann 1996)

τb '
L RE

(E/m)1/2 (3.7 − 1.6 sinαeq). (2.105)

Thus, for protons

(τb)p ' 2.41
L

√
E(MeV)

(1 − 0.43 sinαeq) seconds, (2.106)

while for electrons

(τb)e ' 5.62 × 10−2 L
√
E(MeV)

(1 − 0.43 sinαeq) seconds. (2.107)

It follows that MeV electrons typically have bounce periods that are less than a sec-
ond, whereas the bounce periods for MeV protons usually lie in the range 1 to 10
seconds. The bounce period only depends weakly on equatorial pitch-angle, because
particles with small pitch angles have relatively large parallel velocities but a com-
paratively long way to travel to their mirror points, and vice versa. Naturally, the
bounce period is longer for longer field-lines (that is, for larger L).
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2.11 EQUATORIAL RING CURRENT

Up to now, we have only considered the lowest-order motion (in other words, gyra-
tion combined with parallel drift) of charged particles in the magnetosphere. Let us
now examine the higher-order corrections to this motion. For the case of nontime-
varying fields, and a weak electric field, these corrections consist of the following
combination of E × B drift, grad-B drift, and curvature drift:

v1⊥ =
E × B

B2 +
µ

mΩ
b × ∇B +

v2
‖

Ω
b × (b · ∇) b. (2.108)

Let us neglect E × B drift, because this motion merely gives rise to the convection
of plasma within the magnetosphere, without generating a current. By contrast, there
is a net current associated with grad-B drift and curvature drift. In the limit in which
this current does not strongly modify the ambient magnetic field (that is, ∇×B ' 0),
which is certainly the situation in the Earth’s inner magnetosphere, we can write

(b · ∇) b = −b × (∇ × b) '
∇⊥B

B
. (2.109)

It follows that the higher-order drifts can be combined to give

v1⊥ =

(
v2
⊥/2 + v2

‖

)
Ω B

b × ∇B. (2.110)

For the dipole magnetic field specified in Equation (2.91), the previous expression
yields

v1⊥ ' −sgn(Ω)
6E L2

e BE RE
(1 − B/2 Bm)

cos5 ϑ (1 + sin2 ϑ)
(1 + 3 sin2 ϑ)2

eϕ. (2.111)

It can be seen that the drift is in the azimuthal direction. A positive drift velocity cor-
responds to eastward motion, whereas a negative velocity corresponds to westward
motion. It follows that, in addition to their gyromotion, and their periodic bouncing
motion along field-lines, charged particles trapped in the magnetosphere also slowly
precess around the Earth. The ions drift westward and the electrons drift eastward,
giving rise to a net westward current circulating around the Earth. This current is
known as the ring current.

Although the perturbations to the Earth’s magnetic field induced by the ring cur-
rent are small, they are still detectable. In fact, the ring current causes a slight re-
duction in the Earth’s magnetic field in equatorial regions. The size of this reduction
is a good measure of the number of charged particles contained in the Van Allen
belts. During the development of so-called geomagnetic storms, charged particles
are injected into the Van Allen belts from the outer magnetosphere, giving rise to a
sharp increase in the ring current, and a corresponding decrease in the Earth’s equa-
torial magnetic field. These particles eventually precipitate out of the magnetosphere
into the upper atmosphere at high terrestrial latitudes, giving rise to intense auro-
ral activity, serious interference in electromagnetic communications, and, in extreme
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Figure 2.3 Dst data for March 1989 showing an exceptionally severe geomagnetic
storm on March 13. Raw data from World Data Center for Geomagnetism, Kyoto.

cases, disruption of electric power grids. The reduction in the Earth’s magnetic field
induced by the ring current is measured by the so-called Dst index, which is deter-
mined from hourly averages of the northward horizontal component of the terrestrial
magnetic field recorded at four low-latitude observatories: Honolulu (Hawaii), San
Juan (Puerto Rico), Hermanus (South Africa), and Kakioka (Japan). Figure 2.3 shows
the Dst index for the month of March 1989. The very marked reduction in the index,
centered on March 13, corresponds to one of the most severe geomagnetic storms ex-
perienced in recent decades. In fact, this particular storm was so severe that it tripped
out the whole Hydro Québec electric distribution system, plunging more than 6 mil-
lion customers into darkness. Most of Hydro Québec’s neighboring systems in the
United States came uncomfortably close to experiencing the same cascading power
outage scenario. Incidentally, a reduction in the Dst index by 600 nT corresponds to
a 2 percent reduction in the terrestrial magnetic field at the equator.

According to Equation (2.111), the precessional drift velocity of charged par-
ticles in the magnetosphere is a rapidly decreasing function of increasing latitude
(in other words, the ring current is concentrated in the equatorial plane). Because
charged particles typically complete many bounce orbits during a full circuit around
the Earth, it is convenient to average Equation (2.111) over a bounce period to obtain
the average drift velocity. This averaging can only be performed numerically. The
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final answer is well approximated by (Baumjohan and Treumann 1996)

〈vd〉 '
6E L2

e BE RE
(0.35 + 0.15 sinαeq). (2.112)

The average drift period (that is, the time required to perform a complete circuit
around the Earth) is simply

〈τd〉 =
2π L RE

〈vd〉
'
π e BE R2

E

3E L
(0.35 + 0.15 sinαeq)−1. (2.113)

Thus, the drift period for protons and electrons is

〈τd〉p = 〈τd〉e '
1.05

E(MeV) L
(1 + 0.43 sinαeq)−1 hours. (2.114)

Note that MeV energy electrons and ions precess around the Earth with about the
same velocity, only in opposite directions, because there is no explicit mass depen-
dence in Equation (2.112). It typically takes an hour to perform a full circuit. The
drift period only depends weakly on the equatorial pitch angle, as is the case for
the bounce period. Somewhat paradoxically, the drift period is shorter on more dis-
tant L-shells. Of course, charged particles only get a chance to complete a full circuit
around the Earth if the inner magnetosphere remains quiescent on timescales of order
an hour. This is, by no means, always the case.

Finally, because the rest mass of an electron is 0.51 MeV, many of the previous
formulae require relativistic correction when applied to MeV energy electrons. For-
tunately, however, there is no such problem for protons, whose rest mass energy is
0.94 GeV.

2.12 SECOND ADIABATIC INVARIANT

We have seen that there is an adiabatic invariant associated with the periodic gyration
of a charged particle around magnetic field-lines. Thus, it is reasonable to suppose
that there is a second adiabatic invariant associated with the periodic bouncing mo-
tion of a particle trapped between two mirror points on a magnetic field-line. This is
indeed the case.

Recall that an adiabatic invariant is the lowest order approximation to a Poincaré
invariant:

J =

∮
C

p · dq. (2.115)

In this case, let the curve C correspond to the trajectory of a guiding center as a
charged particle trapped in the Earth’s magnetic field executes a bounce orbit. Of
course, this trajectory does not quite close, because of the slow azimuthal drift of
particles around the Earth. However, it is easily demonstrated that the azimuthal dis-
placement of the end point of the trajectory, with respect to the beginning point, is
similar in magnitude to the gyroradius. Thus, in the limit in which the ratio of the
gyroradius, ρ, to the variation lengthscale of the magnetic field, L, tends to zero,
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the trajectory of the guiding center can be regarded as being approximately closed,
and the actual particle trajectory conforms very closely to that of the guiding center.
Thus, the adiabatic invariant associated with the bounce motion can be written

J ' J =

∮
p‖ ds, (2.116)

where the path of integration is along a field-line, from the equatorial plane to the
upper mirror point, back along the field-line to the lower mirror point, and then back
to the equatorial plane. Furthermore, ds is an element of arc-length along the field-
line, and p‖ ≡ p · b. Using p = m v + e A, the previous expression yields

J = m
∮

v‖ ds + e
∮

A‖ ds = m
∮

v‖ ds + eΨ. (2.117)

Here, Ψ is the total magnetic flux enclosed by the curve—which, in this case, is obvi-
ously zero. Thus, the so-called second adiabatic invariant, or longitudinal adiabatic
invariant, takes the form

J = m
∮

v‖ ds. (2.118)

In other words, the second invariant is proportional to the loop integral of the parallel
(to the magnetic field) velocity taken over a bounce orbit. The preceding “proof” of
the invariance of J is not particularly rigorous. In fact, the rigorous proof that J is
an adiabatic invariant was first given by Northrop and Teller (Northrop and Teller
1960). Of course, J is only a constant of the motion for particles trapped in the inner
magnetosphere provided the magnetospheric magnetic field varies on timescales that
are much longer than the bounce time, τb. Because the bounce time for MeV energy
protons and electrons is, at most, a few seconds, this is not a particularly onerous
constraint.

The invariance of J is of great importance for charged particle dynamics in the
Earth’s inner magnetosphere. It turns out that the Earth’s magnetic field is distorted
from pure axisymmetry by the action of the solar wind, as illustrated in Figure 2.4.
Because of this asymmetry, there is no particular reason to believe that a particle
will return to its earlier trajectory as it makes a full circuit around the Earth. In other
words, the particle may well end up on a different field-line when it returns to the
same azimuthal angle. However, at a given azimuthal angle, each field-line has a dif-
ferent length between mirror points, and a different variation of the field-strength, B,
between the mirror points (for a particle with given energy, E, and magnetic moment,
µ). Thus, each field-line represents a different value of J for that particle. So, if J is
conserved, as well as E and µ, then the particle must return to the same field-line after
precessing around the Earth. In other words, the conservation of J prevents charged
particles from spiraling radially in or out of the Van Allen belts as they rotate around
the Earth. This helps to explain the persistence of these belts.

2.13 THIRD ADIABATIC INVARIANT

It is clear, by now, that there is an adiabatic invariant associated with every periodic
motion of a charged particle in an electromagnetic field. We have just demonstrated
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Figure 2.4 Schematic diagram showing the distortion of the Earth’s magnetic field
by the solar wind.

that, as a consequence of J-conservation, the drift orbit of a charged particle pre-
cessing around the Earth is approximately closed, despite the fact that the Earth’s
magnetic field is nonaxisymmetric. Thus, there must be a third adiabatic invariant
associated with the precession of particles around the Earth. Just as we can define
a guiding center associated with a particle’s gyromotion around field-lines, we can
also define a bounce center associated with a particle’s bouncing motion between
mirror points. The bounce center lies on the equatorial plane, and orbits the Earth
once every drift period, τd. We can write the third adiabatic invariant as

K '
∮

pφ ds, (2.119)

where the path of integration is the trajectory of the bounce center around the Earth.
Incidentally, the drift trajectory effectively collapses onto the trajectory of the bounce
center in the limit that ρ/L→ 0, because all of the particle’s gyromotion and bounce
motion averages to zero. Now, pφ = m vφ + e Aφ is dominated by its second term, as
the drift velocity vφ is very small. Thus,

K ' e
∮

Aφ ds = eΨ, (2.120)

where Ψ is the total magnetic flux enclosed by the drift trajectory (that is, the flux
enclosed by the orbit of the bounce center around the Earth). The previous “proof”
of the invariance of Ψ is, again, not particularly rigorous. In fact, the invariance of Ψ
was first demonstrated rigorously by Northrop (Northrop 1963). Of course, Ψ is only
a constant of the motion for particles trapped in the inner magnetosphere provided
the magnetospheric magnetic field varies on timescales that are much longer than the
drift period, τd. Because the drift period for MeV energy protons and electrons is of
order an hour, this is only likely to be the case when the magnetosphere is relatively
quiescent (in other words, when there are no geomagnetic storms in progress).
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The invariance of Ψ has interesting consequences for charged particle dynamics
in the Earth’s inner magnetosphere. Suppose, for instance, that the strength of the
solar wind were to increase slowly (that is, on timescales significantly longer than
the drift period), thereby, compressing the Earth’s magnetic field. The invariance
of Ψ would cause the charged particles that constitute the Van Allen belts to move
radially inwards, toward the Earth, in order to conserve the magnetic flux enclosed
by their drift orbits. Likewise, a slow decrease in the strength of the solar wind would
cause an outward radial motion of the Van Allen belts.

2.14 EXERCISES

1. Given that ρ = ρ (− cos γ e1 + sin γ e2), and u = Ω ρ × b, where ρ = u⊥/Ω,
and e1, e2, b ≡ B/B are a right-handed set of mutually perpendicular unit basis
vectors, demonstrate that:

(a)

〈ρ ρ〉 =
u2
⊥

2Ω2 (I − b b) .

(b)
e 〈u × (ρ · ∇) B〉 = −µ∇B.

(c)

e 〈u · (ρ · ∇) E〉 = µ
∂B
∂t
.

(d)
e 〈u · (ρ · ∇) A〉 = −µ B.

Here, µ = m u2
⊥/(2 B), and 〈· · · 〉 ≡

∮
(· · · ) dγ/2π.

2. A quasi-neutral slab of cold (i.e., λD → 0) plasma whose bounding surfaces
are normal to the x-axis consists of electrons of mass me, charge −e, and mean
number density ne, as well as ions of mass mi, charge e, and mean number
density ne. The slab is fully magnetized by a uniform y-directed magnetic field
of magnitude B. The slab is then subject to an externally generated, uniform,
x-directed electric field that is gradually ramped up to a final magnitude E0.
Show that, as a consequence of ion polarization drift, the final magnitude of
the electric field inside the plasma is

E1 '
E0

ε
,

where

ε = 1 +
c2

V2
A

,

and VA = B/
√
µ0 ne mi is the so-called Alfvén velocity.
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3. A linear magnetic dipole consists of two infinite straight wires running parallel
to the z-axis. The first wire lies at x = 0, y = d/2 and carries a steady current
I. The second lies at x = 0, y = −d/2 and carries a steady current −I. Let r =

(x2 + y2)1/2 and θ = tan−1(y/x). Demonstrate that the magnetic field generated
by the dipole in the region r � d can be written

B = ∇ψ × ez,

where
ψ =

µ0 I d
2π

sin θ
r
.

4. Consider a particle of charge e, mass m, and energy E, trapped on a field-line of
the linear magnetic dipole discussed in the previous exercise. Let ϑ = π/2 − θ.
Suppose that the field-line crosses the “equatorial” plane ϑ = 0 at r = req �

d/2, and that the magnetic field-strength at this point is Beq. Suppose that the
particle’s mirror points lie at ϑ = ±ϑm. Assume that the particle’s gyroradius
is much smaller than req, and that the electric field-strength is negligible.

(a) Demonstrate that the variation of the particle’s perpendicular and parallel
velocity components with the “latitude” ϑ is

v⊥ =

(
2E
m

)1/2 cosϑm

cosϑ
,

v‖ = ±

(
2E
m

)1/2 (
1 −

cos2 ϑm

cos2 ϑ

)1/2

,

respectively.

(b) Demonstrate that the particle’s bounce period is

τb =

√
2 π req

(E/m)1/2 .

(c) Demonstrate that the particle drifts in the z-direction with the mean ve-
locity

〈vd〉 =
2E

e Beq req
.

5. A charged particle of mass m is trapped in a static magnetic mirror field given
by

Bz = B0

(
1 +

z2

L2

)
,

and has total kinetic energy E, and pitch angle α at z = 0. Assuming that the
electric field is negligible, and that the particle’s gyroradius is much less than
L, use guiding center theory to show that the bounce time is

τb =
2π L

sinα
√

2E/m
.
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6. A particle of charge e, mass m, and energy E, is trapped in a one-dimensional
magnetic well of the form

B(x, t) = B0 (1 + k2 x2),

where B0 is constant, and k(t) is a very slowly increasing function of time.
Suppose that the particle’s mirror points lie at x = ±xm(t), and that its bounce
time is τb(t). Demonstrate that, as a consequence of the conservation of the
first and second adiabatic invariants,

xm(t) = xm(0)
[
k(0)
k(t)

]1/2

,

τb(t) = τb(0)
[
k(0)
k(t)

]
,

E(t) = E0⊥ +

[
k(t)
k(0)

]
E0 ‖.

Here, E0⊥ is the perpendicular energy [i.e., (1/2) m v2
⊥], and E0 ‖ is the parallel

energy [i.e., (1/2) m v2
‖
], both evaluated at x = 0 and t = 0. Assume that the

particle’s gyroradius is relatively small, and that the electric field-strength is
negligible.

7. Consider the static magnetic field

Bz(y) =


B0 y > a
B0 (y/a) |y| < a
−B0 y < −a

which corresponds to a current sheet such as that found in the Earth’s magneto-
tail. Let the electric field be negligible. Consider the orbits of charged particles
of mass m and charge e whose gyroradii, ρ, are not necessarily much smaller
than the shear-length, a, of the magnetic field. In this situation, guiding center
theory is inapplicable. The particles’ orbits can only be analyzed by directly
solving their equations of perpendicular motion. It is easily demonstrated that
some orbits do not cross the neutral plane (y = 0) and resemble conventional
magnetized particle orbits, whereas others meander across the neutral plane
and are quite different from conventional orbits.

(a) Consider a particle orbit that does not cross the neutral plane, but is in-
stead confined to the region y+ ≥ y ≥ y−, where a > y+ > y− > 0.
Demonstrate that the mean drift velocity of the particle in the x-direction
can be written

〈vx〉 = −

(
Ω0

4 a

)
(y2

+ + y2
−) (1 − α),

where Ω0 = e B0/m, and

α =

∫ 1
−1(1 + κ ζ)1/2 (1 − ζ2)−1/2 dζ∫ 1
−1(1 + κ ζ)−1/2 (1 − ζ2)−1/2 dζ

,
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with κ = (y2
+ − y

2
−)/(y2

+ + y2
−). Show that in the limit |y+ − y−|/a � 1 the

previous result is consistent with that obtained from conventional guiding
center theory.

(b) Consider a particle orbit that is confined to the region y0 ≥ y ≥ −y0,
where a > y0, and is such that vx = 0 when y = 0. Demonstrate that the
mean drift velocity in the x-direction is

〈vx〉 = +0.223
(
Ω0

a

)
y2

0.
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C H A P T E R 3

Collisions

3.1 INTRODUCTION

As was discussed in Chapter 1, collisions do not play as central a role in plasmas
as they do in conventional neutral gases. Indeed, relatively hot, diffuse plasmas are
essentially collisionless. Probably the most significant effect of collisions is that they
act to relax particle distribution functions toward Maxwellian distributions. (See Sec-
tion 3.11.) The aim of this chapter is to develop a theory of collisions that is appli-
cable to a weakly coupled plasma. The fact that the plasma in question is weakly
coupled (i.e., the Debye length greatly exceeds the distance of closest approach of
colliding particles, which also implies that the mean-free-path between collisions
greatly exceeds the Debye length) means that it is a good approximation to treat
the collisions as occasional binary events. (See Sections 1.6 and 1.7.) As we shall
see, the long-range nature of the Coulomb force renders the theory of collisions in a
plasma significantly different from the corresponding theory for a neutral gas (where
the inter-particle forces are invariably short-range in nature).

3.2 COLLISION OPERATOR

Plasma physics can be regarded formally as a closure of Maxwell’s equations by
means of constitutive relations: that is, expressions specifying the charge density,
ρc, and the current density, j, in terms of the electric and magnetic fields, E and B
(Hazeltine and Waelbroeck 2004). Such relations can be expressed in terms of the
microscopic distribution functions, Fs, for each plasma species:

ρc =
∑

s

es

∫
Fs(r, v, t) d3v, (3.1)

j =
∑

s

es

∫
vFs(r, v, t) d3v. (3.2)

Here, Fs(r, v, t) is the exact microscopic phase-space density of plasma species s
(with charge es and mass ms) near point (r, v) at time t (Reif 1965). The distribution
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functionFs is normalized such that its velocity integral is equal to the particle number
density in coordinate space. In other words,∫

Fs(r, v, t) d3v = ns(r, t), (3.3)

where ns(r, t) is the number (per unit volume) of species-s particles near point r at
time t.

If we could determine each Fs(r, v, t) in terms of the electromagnetic fields then
Equations (3.1) and (3.2) would give us the desired constitutive relations. In fact, the
time evolution of the various distribution functions is determined by particle conser-
vation in phase-space, which requires that (Reif 1965)

∂Fs

∂t
+ v ·

∂Fs

∂r
+ as ·

∂Fs

∂v
= 0, (3.4)

where
as =

es

ms
(E + v × B) (3.5)

is the species-s particle acceleration under the influence of the E and B fields.
Equation (3.4) is easy to derive because it is exact, taking into account all length-

scales from the microscopic to the macroscopic. Note, in particular, that there is no
statistical averaging involved in Equation (3.4). It follows that the microscopic dis-
tribution function, Fs, is essentially a sum of Dirac delta-functions, each following
the detailed trajectory of a single particle. Consequently, the electromagnetic fields
appearing in Equation (3.4) are extremely spiky on microscopic scales. In fact, solv-
ing Equation (3.4) is equivalent to solving the classical electromagnetic many-body
problem, which is a completely hopeless task.

A much more useful equation can be extracted from Equation (3.4) by ensemble
averaging (Reif 1965). The average distribution function,

〈Fs〉 ≡ fs, (3.6)

is smooth on microscopic lengthscales, and is closely related to actual experimen-
tal measurements. Here, angle brackets denote an ensemble average. Similarly, the
ensemble-averaged electromagnetic fields are also smooth. Unfortunately, the extrac-
tion of an ensemble-averaged equation from Equation (3.4) is mathematically chal-
lenging, and invariably involves some level of approximation (Balescu 1960; Boboli-
ubov 1946; Lenard 1960). The problem is that, because the exact electromagnetic
fields depend on particle trajectories, E and B are not statistically independent of Fs.
In other words, as a consequence of correlations between the distribution function
and the electromagnetic fields on microscopic lengthscales, the ensemble average of
the nonlinear acceleration term in Equation (3.4) is such that〈

as ·
∂Fs

∂v

〉
, 〈as〉 ·

∂ fs

∂v
. (3.7)
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It is convenient to write 〈
as ·

∂Fs

∂v

〉
= 〈as〉 ·

∂ fs

∂v
−Cs( f ), (3.8)

where Cs is an operator that accounts for the correlations. Because the most impor-
tant correlations result from close encounters between particles, Cs is known as the
collision operator (for species s). It is not generally a linear operator, and usually
involves the distribution functions of both colliding species (the subscript in the ar-
gument of Cs is omitted for this reason). Hence, the ensemble-averaged version of
Equation (3.4) is written

∂ fs

∂t
+ v ·

∂ fs

∂r
+

es

ms
(E + v × B) ·

∂ fs

∂v
= Cs( f ), (3.9)

where E and B are now understood to be the smooth, ensemble-averaged electro-
magnetic fields. Of course, in a weakly coupled plasma, the dominant collisions are
two-particle Coulomb collisions. Equation (3.9) is generally known as the kinetic
equation.

3.3 TWO-BODY ELASTIC COLLISIONS

Before specializing to two-body Coulomb collisions, it is convenient to develop a
general theory of two-body elastic collisions. Consider an elastic collision between
a species-s particle and a species-s′ particle. Let the mass and instantaneous velocity
of the former particle be ms and vs, respectively. Likewise, let the mass and instan-
taneous velocity of the latter particle be ms′ and vs′ , respectively. The velocity of the
center of mass is given by

Uss′ =
ms vs + ms′ vs′

ms + ms′
. (3.10)

Moreover, conservation of momentum implies that Uss′ is a constant of the motion.
The relative velocity is defined

uss′ = vs − vs′ . (3.11)

We can express vs and vs′ in terms of Uss′ and uss′ as follows:

vs = Uss′ +
µss′

ms
uss′ , (3.12)

vs′ = Uss′ −
µss′

ms′
uss′ . (3.13)

Here,
µss′ =

ms ms′

ms + ms′
(3.14)

is the reduced mass. The total kinetic energy of the system is written

Kss′ =
1
2

ms v
2
s +

1
2

ms′ v
2
s′ =

1
2

(ms + ms′ ) U2
ss′ +

1
2
µss′ u2

ss′ . (3.15)
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Now, the kinetic energy is the same before and after an elastic collision. Hence, given
that Uss′ is constant, we deduce that the magnitude of the relative velocity, uss′ , is also
the same before and after such a collision. Thus, it is only the direction of the relative
velocity vector, rather than its length, that changes during an elastic collision.

3.4 BOLTZMANN COLLISION OPERATOR

Let σ′(vs, vs′ ; v′s, v′s′ ) d3v′s d3v′s′ be the number of species-s particles per unit time,
per unit flux of species-s particles incident with velocity vs on a species-s′ particle of
velocity vs′ , that are scattered such that the species-s particles emerge in the velocity
range v′s to v′s+dv′s and the species-s′ particle emerges in the velocity range v′s′ to v′s′+
dv′s′ (Reif 1965). Assuming that the scattering process is reversible in time and space
(which is certainly the case for two-body Coulomb collisions), the corresponding
quantity for the inverse process must be equal to that for the forward process (Reif
1965). In other words,

σ′(v′s, v
′
s′ ; vs, vs′ ) d3vs d3vs′ = σ′(vs, vs′ ; v′s, v

′
s′ ) d3v′s d3v′s′ . (3.16)

However, it is easily demonstrated from Equations (3.12) and (3.13) that

d3vs d3vs′ = d3Uss′ d3uss′ = d3Uss′ d3u′ss′ = d3v′s d3v′s′ . (3.17)

The result d3uss′ = d3u′ss′ follows from the fact that the vectors uss′ and u′ss′ differ
only in direction. Hence, we deduce that

σ′(v′s, v
′
s′ ; vs, vs′ ) = σ′(vs, vs′ ; v′s, v

′
s′ ). (3.18)

The rate of decrease in the number of species-s particles located between
r and r + dr, and having velocities in the range vs to vs + dvs, due to scat-
tering of species-s particles by species-s′ particles is obtained by multiplying
σ′(vs, vs′ ; v′s, v′s′ ) d3v′s d3v′s′ by the the relative flux, uss′ fs(r, vs, t) d3vs, of species-s
particles incident on a species-s′ particle, then multiplying by the number of species-
s′ particles, fs′ (r, vs′ , t) d3r d3vs′ , that can do the scattering, and, finally, summing
over all possible species-s initial velocities, and all possible species-s and species-s′

final velocities. In other words,

−

[
∂ fs(r, vs, t)

∂t

]
ss′

d3r d3vs =

∫
vs′

∫
v′s

∫
v′s′

[uss′ fs(r, vs, t) d3vs] [ fs′ (r, vs′ , t) d3r d3vs′ ]

× [σ′(vs, vs′ ; v′s, v
′
s′ ) d3v′s d3v′s′ ]. (3.19)

Here, uss′ = |vs−vs′ |. Moreover, fs(r, vs, t) and fs′ (r, vs′ , t) are the ensemble-averaged
distribution functions for species-s and species-s′ particles, respectively.

In writing the previous expression, we have assumed that the distribution func-
tions fs and fs′ are uncorrelated. This assumption is reasonable provided that the
mean-free-path is much longer than the effective range of the inter-particle force.
(This follows because, before they encounter one another, two colliding particles
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originate at different points that are typically separated by a mean-free-path. How-
ever, the typical correlation length is of similar magnitude to the range of the inter-
particle force.) In writing the previous expression, we have also implicitly assumed
that the inter-particle force responsible for the collisions is sufficiently short-range
that the particle position vectors do not change appreciably (on a macroscopic length-
scale) during a collision. (Both of the previous assumptions are valid in a conven-
tional weakly coupled plasma because the range of the inter-particle force is of or-
der the Debye length, which is assumed to be much smaller than any macroscopic
lengthscale. Moreover, the mean-free-path is much longer than the Debye length—
see Section 1.7.)

By analogy with Equation (3.19), the rate of increase in the number of species-
s particles located between r and r + dr, and having velocities in the range vs to
vs + dvs, due to the recoil of species-s particles that scatter species-s′ particles is[
∂ fs(r, vs, t)

∂t

]
s′ s

d3r d3vs =

∫
vs′

∫
v′s

∫
v′s′

[u′ss′ fs(r, v′s, t) d3v′s] [ fs′ (r, v′s′ , t) d3r d3v′s′ ]

× [σ′(v′s, v
′
s′ ; vs, vs′ ) d3vs d3vs′ ]. (3.20)

where u′ss′ = v′s−v′s′ . Making use of Equations (3.16) and (3.17), as well as u′ss′ = uss′ ,
we obtain[
∂ fs(r, vs, t)

∂t

]
s′ s

d3r d3vs =

∫
vs′

∫
v′s

∫
v′s′

[uss′ fs(r, v′s, t) d3vs] [ fs′ (r, v′s′ , t) d3r d3vs′ ]

× [σ′(vs, vs′ ; v′s, v
′
s′ ) d3v′s d3v′s′ ]. (3.21)

The net rate of change of the distribution function of species-s particles with
velocities vs (at position r and time t) due to collisions with species-s′ particles [i.e.,
the collision operator—see Equation (3.9)] is given by

Css′ ( fs, fs′ ) =

[
∂ fs(r, vs, t)

∂t

]
ss′

+

[
∂ fs(r, vs, t)

∂t

]
s′ s
. (3.22)

Hence,

Css′ ( fs, fs′ ) =

∫ ∫ ∫
uss′ σ

′(vs, vs′ ; v′s, v
′
s′ ) ( f ′s f ′s′ − fs fs′ ) d3vs′ d3v′s d3v′s′ . (3.23)

Here, fs, fs′ , f ′s , and f ′s′ are short-hand for fs(r, vs, t), fs′ (r, vs′ , t), fs(r, v′s, t), and
fs′ (r, v′s′ , t), respectively. The previous expression is known as the Boltzmann colli-
sion operator (Boltzmann 1995). By an analogous argument, the net rate of change
of the distribution function of species-s′ particles with velocities vs′ (at position r
and time t) due to collisions with species-s particles is given by

Cs′ s( fs, fs′ ) =

∫ ∫ ∫
uss′ σ

′(vs, vs′ ; v′s, v
′
s′ ) ( f ′s f ′s′ − fs fs′ ) d3vs d3v′s d3v′s′ . (3.24)

Expression (3.23) for the Boltzmann collision operator can be further sim-
plified for elastic collisions because, in this case, the collision cross-section
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σ′(vs, vs′ ; v′s, v′s′ ) is a function only of the magnitude of the relative velocity vector,
uss′ , and its change in direction as a result of the collision. Furthermore, the integral
over the final velocities v′s and v′s′ reduces to an integral over all solid angles for the
change in direction of uss′ . Thus, we can write

σ′(vs, vs′ ; v′s, v
′
s′ ) d3v′s d3v′s′ =

dσ(uss′ , χ, φ)
dΩ

dΩ, (3.25)

where Ω = sin χ dχ dφ. Here, χ is the angle through which the direction of uss′ is de-
flected as a consequence of the collision (see Figure 3.1), and φ is an azimuthal angle
that determines the orientation of the plane in which the vector uss′ is confined dur-
ing the collision. (See Section 3.6.) Moreover, dσ/dΩ is a conventional differential
scattering cross-section (Reif 1965). Hence, we obtain

Css′ ( fs, fs′ ) =

∫ ∫ ∫
uss′

dσ(uss′ , χ, φ)
dΩ

( f ′s f ′s′ − fs fs′ ) d3vs′ dΩ. (3.26)

Note, finally, that if we exchange the identities of species-s and species-s′ particles
in Equation (3.25) then uss′ → −uss′ , but uss′ → uss′ , χ → χ, and φ → φ. Thus, we
conclude that

σ′(vs′ , vs; v′s′ , v
′
s) = σ′(vs, vs′ ; v′s, v

′
s′ ). (3.27)

3.5 COLLISIONAL CONSERVATION LAWS

Consider∫
Css′ d3vs =

∫ ∫ ∫ ∫
uss′ σ

′(vs, vs′ ; v′s, v
′
s′ ) ( f ′s f ′s′ − fs fs′ ) d3vs d3vs′ d3v′s d3v′s′ ,

(3.28)
which follows from Equation (3.23). Interchanging primed and unprimed dummy
variables of integration on the right-hand side, we obtain∫

Css′ d3vs =

∫ ∫ ∫ ∫
u′ss′ σ

′(v′s, v
′
s′ ; vs, vs′ ) ( fs fs′ − f ′s f ′s′ ) d3v′s d3v′s′ d3vs d3vs′ .

(3.29)
Hence, making use of Equation (3.18), as well as the fact that u′ss′ = uss′ , we deduce
that∫

Css′ d3vs = −

∫ ∫ ∫ ∫
uss′ σ

′(vs, vs′ ; v′s, v
′
s′ ) ( f ′s f ′s′ − fs fs′ ) d3vs d3vs′ d3v′s d3v′s′

= −

∫
Css′ d3vs, (3.30)

which implies that ∫
Css′ d3vs = 0. (3.31)

The previous expression states that collisions with species-s′ particles give rise to
zero net rate of change of the number density of species-s particles at position r and
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time t. In other words, the collisions conserve the number of species-s particles. Now,
it is easily seen from Equations (3.23) and (3.24) that

Css′ d3vs = Cs′ s d3vs′ . (3.32)

Hence, Equation (3.31) also implies that∫
Cs′ s d3vs′ = 0. (3.33)

In other words, collisions also conserve the number of species-s′ particles.
Consider

(ms + ms′ )
∫

Uss′ Css′ d3vs = 0. (3.34)

This integral is obviously zero, as indicated, as a consequence of the conservation
law (3.31), as well as the fact that the center of mass velocity, Uss′ , is a constant
of the motion. However, making use of Equations (3.10) and (3.32), the previous
expression can be rewritten in the form∫

ms vs Css′ d3vs = −

∫
ms′ vs′ Cs′ s d3vs′ . (3.35)

This equation states that the rate at which species-s particles gain momentum due
to collisions with species-s′ particles is equal to the rate at which species-s′ parti-
cles lose momentum due to collisions with species-s particles. In other words, the
collisions conserve momentum.

Finally, consider ∫
Kss′ Css′ d3vs = 0. (3.36)

This integral is obviously zero, as indicated, as a consequence of the conservation
law (3.31), as well as the fact that the kinetic energy, Kss′ , is the same before and
after an elastic collision. It follows from Equations (3.15) and (3.32) that∫

1
2

ms v
2
s Css′ d3vs = −

∫
1
2

ms′ v
2
s′ Cs′ s d3vs′ . (3.37)

This equation states that the rate at which species-s particles gain kinetic energy due
to collisions with species-s′ particles is equal to the rate at which species-s′ particles
lose kinetic energy due to collisions with species-s particles. In other words, the
collisions conserve energy.

3.6 TWO-BODY COULOMB COLLISIONS

Consider a two-body Coulomb collision between a species-s particle, with mass ms

and charge es, and a species-s′ particle, with mass ms′ and charge es′ . The equations
of motion of the two particles take the form

ms r̈s = kss′
rss′

|rss′ |
3 , (3.38)

ms′ r̈s′ = −kss′
rss′

|rss′ |
3 , (3.39)
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where
kss′ =

es es′

4π ε0
, (3.40)

and ˙ denotes a time derivative. Here, rs and rs′ are the respective position vectors,
and rss′ = rs − rs′ is the relative position vector. It is easily demonstrated that

rs = Rss′ +
µss′

ms
rss′ , (3.41)

rs′ = Rss′ −
µss′

ms′
rss′ , (3.42)

where
Rss′ =

ms rs + ms′ rs′

ms + ms′
(3.43)

is the vector position of the center of mass (which does not accelerate). Equa-
tions (3.38) and (3.39) can be combined to give a single equation of relative motion,

µss′ r̈ss′ = kss′
rss′

|rss′ |
3 . (3.44)

Two relations that immediately follow from the previous equation are

dhss′

dt
= 0, (3.45)

dEss′

dt
= 0, (3.46)

where
hss′ = rss′ × ṙss′ (3.47)

is the conserved angular momentum per unit mass, and

Ess′ =
1
2
µss′ |ṙss′ |

2 +
kss′

|rss′ |
(3.48)

the conserved energy.
Equation (3.47) implies that rss′ · hss′ = 0. This is the equation of a plane that

passes through the origin, and whose normal is parallel to the constant vector hss′ .
We, therefore, conclude that the relative position vector r is constrained to lie in this
plane, which implies that the trajectories of both colliding particles are coplanar. Let
the plane rss′ · hss′ = 0 coincide with the x-y plane, so that we can write rss′ = (x, y).
It is convenient to define the standard plane polar coordinates r = (x2 + y2)1/2 and
θ = tan−1(y/x). When expressed in terms of these coordinates, the conserved angular
momentum per unit mass becomes

hss′ = h ez, (3.49)

where
h = r2 θ̇. (3.50)
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Furthermore, the conserved energy takes the form

Ess′ =
1
2
µss′

(
ṙ2 + r2 θ̇2

)
+

kss′

r
. (3.51)

Suppose that r = z−1, where z = z(θ) and θ = θ(r). It follows that

ṙ = −
ż
z2 = −r2 dz

dθ
dθ
dt

= −h
dz
dθ
. (3.52)

Hence, Equation (3.51) transforms to give

Ess′ =
1
2
µss′ h2

( dz
dθ

)2

+ z2

 + kss′ z. (3.53)

It is convenient to define the relative velocity at large distances,

u∞ =

(
2 Ess′

µss′

)1/2

, (3.54)

as well as the impact parameter,

b =
h

u∞
. (3.55)

The latter parameter is simply the distance of closest approach of the two particles
in the situation in which there is no Coulomb force acting between them, and they,
consequently, move in straight-lines. (See Figure 3.1.) The previous three equations
can be combined to give

b2
(

dz
dθ

)2

= 1 − b2 z2 −

(
kss′

Ess′

)
z. (3.56)

Figure 3.1 shows the collision in a frame of reference in which the species-s′

particle remains stationary at the origin, O, whereas the species-s particle traces out
the path ABC. Point B corresponds to the closest approach of the two particles. It
follows, by symmetry (because Coulomb collisions are reversible), that the angles α
and β shown in the figure are equal to one another. Hence, we deduce that

χ = π − 2Θ. (3.57)

Here, χ is the angle through which the path of the species-s (or the species-s′ par-
ticle) is deviated as a consequence of the collision, whereas Θ is the angle through
which the relative position vector, rss′ , rotates as the species-s particle moves from
point A (which is assumed to be infinity far from point O) to point B. Suppose
that point A corresponds to θ = 0. It follows that

Θ =

∫ zmax

0

dθ
dz

dz. (3.58)
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χ
β

b

A

C

α

O

Θ

B

Figure 3.1 A two-body Coulomb collision.

Here, zmax = 1/rmin, where rmin is the distance of closest approach. Now, by symme-
try, (dz/dθ)zmax = 0, so Equation (3.56) implies that

1 − b2 z2
max −

(
kss′

Ess′

)
zmax = 0. (3.59)

Combining Equations (3.56) and (3.58), we obtain

Θ =

∫ zmax

0

b dz√
1 − b2 z2 − kss′ z/Ess′

=

∫ ζmax

0

dζ
1 − ζ2 − α ζ

, (3.60)

where α = kss′/(Ess′ b), and

1 − ζ2
max − α ζmax = 0. (3.61)

Integration (Spiegel, Liu, and Lipschutz 1999) yields

Θ =
π

2
− sin−1

(
α

√
4 + α2

)
. (3.62)

Hence, from Equation (3.57), we get

χ = 2 sin−1
(

α
√

4 + α2

)
, (3.63)

which can be rearranged to give

cot
(
χ

2

)
=

2 Ess′ b
kss′

=
4π ε0 µss′ u2

ss′ b
es es′

. (3.64)
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Note that the analysis in this section tacitly assumes that Coulomb collisions are
not significantly modified by any magnetic field that might pervade the plasma. This
assumption is justified provided that the particle gyroradii are all much larger than
the Debye length.

3.7 RUTHERFORD SCATTERING CROSS-SECTION

Consider a species-s particle, incident with relative velocity uss′ onto an ensemble of
species-s′ particles with number density ns′ . If ps(Ω) dΩ is the probability per unit
time of the particle being scattered into the range of solid angle Ω to Ω+ dΩ then the
differential scattering cross-section, dσ/dΩ, is defined via (Reif 1965)

ps(Ω) dΩ = ns′ uss′
dσ
dΩ

dΩ. (3.65)

Assuming that the scattering is azimuthally symmetric (i.e., symmetric in φ), we can
write dΩ = 2π sin χ dχ. Now, the probability per unit time of a collision having an
impact parameter in the range b to b + db is

ps(b) db = ns′ uss′ 2π b db. (3.66)

Furthermore, we can write

ps(Ω)
∣∣∣∣∣dΩdb

∣∣∣∣∣ = ps(b), (3.67)

provided that χ and b are related according to the two-particle scattering law, Equa-
tion (3.64). (The absolute value of dΩ/db is taken because χ is a monotonically
decreasing function of b.) It follows that

dσ
dΩ

=
2π b
|dΩ/db|

. (3.68)

Equation (3.64) yields

dΩ
db

= 2π sin χ
dχ
db

= −2π sin χ
(

4π ε0 µss′ u2
ss′

es es′

)
2 sin2(χ/2). (3.69)

Finally, Equations (3.64), (3.68), and (3.69) can be combined to give the so-called
Rutherford scattering cross-section,

dσ
dΩ

=
1
4

(
es es′

4π ε0 µss′ u2
ss′

)2 1
sin4(χ/2)

(3.70)

(Rutherford 1911). It is immediately apparent, from the previous formula, that two-
particle Coulomb collisions are dominated by small-angle (i.e., small χ) scattering
events.
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3.8 LANDAU COLLISION OPERATOR

The fact that two-particle Coulomb collisions are dominated by small-angle scat-
tering events allows some simplification of the Boltzmann collision operator in a
plasma. According to Equations (3.26) and (3.70), the Boltzmann collision opera-
tor for two-body Coulomb collisions between species-s particles (with mass ms and
charge es) and species-s′ particles (with mass ms′ and charge es′ ) can be written

Css′ =

∫ ∫ ∫
uss′

dσ
dΩ

( f ′s f ′s′ − fs fs′ ) d3vs′ dΩ, (3.71)

where
dσ
dΩ

=
1
4

(
es es′

4π ε0 µss′ u2
ss′

)2 1
sin4(χ/2)

. (3.72)

Here, uss′ is the relative velocity prior to a collision, and dΩ = sin χ dχ dφ, where χ
is the angle of deflection, and φ is an azimuthal angle that determines the orientation
of the plane in which a given two-body collision occurs. Recall that f ′s , f ′s′ , fs, and
fs′ are short-hand for fs(r, v′s, t), fs′ (r, v′s′ , t), fs(r, vs, t), and fs′ (r, vs′ , t), respectively.

The species-s and species-s′ particle velocities prior to the collision are vs and
vs′ , respectively, so that uss′ = vs−vs′ . Let us write the corresponding velocities after
the collision as (see Section 3.3)

v′s = vs +
µss′

ms
gss′ , (3.73)

v′s′ = vs′ −
µss′

ms′
gss′ . (3.74)

Here, gss′ = u′ss′ − uss′ is assumed to be small, which implies that the angle of
deflection is also small. Expanding f ′s ≡ fs(r, v′s, t) to second order in gss′ , we obtain

fs(v′s) ' fs(vs) +
µss′

ms
gss′ ·

∂ fs(vs)
∂vs

+
1
2
µ2

ss′

m2
s

gss′gss′ :
∂2 fs(vs)
∂vs∂vs

. (3.75)

Likewise, expanding f ′s′ ≡ fs′ (r, v′s′ , t), we get

fs′ (v′s′ ) ' fs′ (vs) −
µss′

ms′
gss′ ·

∂ fs′ (vs′ )
∂vs′

+
1
2
µ2

ss′

m2
s′

gss′gss′ :
∂2 fs′ (vs′ )
∂vs′∂vs′

. (3.76)

Note that, in writing the previous two equations, we have neglected the r and t de-
pendence of fs(r, v′s, t), et cetera, for ease of notation. Hence,

f ′s f ′s′ − fs fs′ ' µss′ gss′ ·

(
∂ fs

∂vs

fs′

ms
−

fs

ms′

∂ fs′

∂vs′

)
+

1
2
µ2

ss′ gss′gss′ :
(
∂2 fs

∂vs∂vs

fs′

m2
s

+
fs

m2
s′

∂2 fs′

∂vs′∂vs′
−

2
ms ms′

∂ fs

∂vs

∂ fs′

∂vs′

)
.

(3.77)
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It follows that

Css′ '
1
4

(
es es′

4π ε0 µss′

)2

×

∫∫ [
µss′ gss′ · Jss′ +

1
2
µ2

ss′ gss′gss′ :
(

1
ms

∂

∂vs
−

1
ms′

∂

∂vs′

)
Jss′

]
d3vs′ dΩ

u3
ss′ sin4(χ/2)

,

(3.78)

where
Jss′ =

∂ fs

∂vs

fs′

ms
−

fs

ms′

∂ fs′

∂vs′
. (3.79)

Let l, m, and n be a right-handed set of mutually orthogonal unit vectors. Suppose
that uss′ = uss′ l. Recall that u′ss′ = uss′ + gss′ . Now, in an elastic collision for which
the angle of deviation is χ, we require |u′ss′ | = |uss′ |, |uss′ × u′ss′ | = u2

ss′ sin χ, and
u′ss′ = uss′ when χ = 0. In other words, we need |gss′ + uss′ l| = uss′ , |l × gss′ | =

uss′ sin χ, and gss′ = 0 when χ = 0. We deduce that

gss′ ' uss′
[
(cos χ − 1) l + sin χ cos φm + sin χ sin φn

]
. (3.80)

Thus,∫
gss′ dΩ

sin4(χ/2)
=

∫ π

0

∮
gss′ sin χ dχ dφ

sin4(χ/2)
= uss′

∫
(cos χ − 1) dΩ

sin4(χ/2)
= −uss′

∫
2 dΩ

sin2(χ/2)
,

(3.81)

and∫
gss′gss′ dΩ

sin4(χ/2)
'

u2
ss′

2
(mm + nn)

∫
sin2 χ dΩ

sin4(χ/2)
' u2

ss′ (I − ll)
∫

2 dΩ

sin2(χ/2)
, (3.82)

where use has again been made of the fact that χ is small.
Now,∫

2 dΩ

sin2(χ/2)
=

∫
4π sin χ dχ

sin2(χ/2)
' 16π

∫
d(χ/2)

sin(χ/2)
= 16π ln

(
χmax

χmin

)
, (3.83)

where χmax and χmin are the maximum and minimum angles of deflection, respec-
tively. However, according to Equation (3.64), small-angle two-body Coulomb colli-
sions are characterized by

χ '
es es′

2π ε0 µss′ u2
ss′ b

, (3.84)

where b is the impact parameter. Thus, we can write∫
2 dΩ

sin2(χ/2)
= 16π lnΛc, (3.85)

where the quantity

lnΛc = ln
(
χmax

χmin

)
= ln

(
bmax

bmin

)
(3.86)
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is known as the Coulomb logarithm.
It follows from the previous analysis that

Css′ =

(
es es′

4π ε0 µss′

)2

4π lnΛc

×

∫ [
−
µss′ l · Jss′

u2
ss′

+
µ2

ss′

2 uss′
(I − ll) :

(
1

ms

∂

∂vs
−

1
ms′

∂

∂vs′

)
Jss′

]
d3vs′ . (3.87)

If we define the tensor

wss′ =
I − ll
uss′

=
u2

ss′ I − uss′uss′

u3
ss′

(3.88)

then it is readily seen that(
∂

∂uss′
· wss′

)
α

≡
∂

∂uss′ β

(
δαβ

(uss′ γ uss′ γ)1/2 −
uss′ α uss′ β

(uss′ γ uss′ γ)3/2

)
= −

2 uss′ α

(uss′ γ uss′ γ)3/2

= −

(
2 l
u2

ss′

)
α

. (3.89)

Here, α, β, and γ run from 1 to 3, and correspond to Cartesian components. Moreover,
we have made use of the Einstein summation convention (that repeated indices are
implicitly summed from 1 to 3) (Riley 1974). Hence, we deduce that

Css′ =

(
es es′

4π ε0 µss′

)2

4π lnΛc

×

∫ [
µss′

2

(
∂

∂uss′
· wss′

)
· Jss′ +

µ2
ss′

2
wss′ :

(
1

ms

∂

∂vs
−

1
ms′

∂

∂vs′

)
Jss′

]
d3vs′ .

(3.90)

Integration by parts yields

Css′ =

(
es es′

4π ε0 µss′

)2

4π lnΛc

×

∫ [
µss′

2

(
∂

∂uss′
· wss′

)
· Jss′ +

µ2
ss′

2 ms
wss′ :

∂Jss′

∂vs
+

µ2
ss′

2 ms′

(
∂

∂vs′
· wss′

)
· Jss′

]
d3vs′ .

(3.91)

However,
∂

∂vs′
· wss′ = −

∂

∂uss′
· wss′ = −

∂

∂vs
· wss′ , (3.92)

because wss′ is a function of uss′ = vs − vs′ . Thus, we obtain the so-called Landau
collision operator (Landau 1936),

Css′ =
γss′

ms

∂

∂vs
·

∫
wss′ · Jss′ d3vs′ , (3.93)

where

γss′ =

(
es es′

4π ε0

)2

2π lnΛc. (3.94)
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3.9 ROSENBLUTH POTENTIALS

It is sometimes convenient to write the Landau collision operator in the form

Css′ = −
1

ms

∂

∂vs
· Ass′ , (3.95)

where
Ass′ = Bss′ fs − Dss′ ·

∂ fs

∂vs
, (3.96)

and

Bss′ =
γss′

ms′

∫
wss′ ·

∂ fs′

∂vs′
d3vs′ , (3.97)

Dss′ =
γss′

ms

∫
wss′ fs′ d3vs′ . (3.98)

Let

Gs′ (vs) =

∫
uss′ fs′ d3vs′ , (3.99)

Hs′ (vs) =

∫
u−1

ss′ fs′ d3vs′ . (3.100)

Now, from Equation (3.88),

wss′ αβ =
δαβ

uss′
−

uss′ α uss′ β

u3
ss′

. (3.101)

Moreover,

∂uss′

∂uss′ α
=

uss′ α

uss′
, (3.102)

∂uss′ α

∂uss′ β
= δαβ. (3.103)

Hence, it is easily demonstrated that

wss′ αβ =
∂2uss′

∂uss′ α ∂uss′ β
, (3.104)

∂wss′ αβ

∂uss′ β
=
∂wss′ ββ

∂uss′ α
= 2

∂

∂uss′ α

(
1

uss′

)
. (3.105)

According to Equations (3.97) and (3.98),

Bss′ =
γss′

ms′

∫
wss′ ·

∂ fs′

∂vs′
d3vs′ =

γss′

ms′

∫
∂

∂uss′
· wss′ fs′ d3vs′ , (3.106)

Dss′ =
γss′

ms

∫
wss′ fs′ d3vs′ , (3.107)
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where we have integrated the first equation by parts, making use of Equation (3.92).
Thus, we deduce from Equations (3.104) and (3.105) that

Bss′ =
2 γss′

ms′

∂Hs′

∂vs
, (3.108)

Dss′ =
γss′

ms

∂2Gs′

∂vs∂vs
. (3.109)

The quantities Hs′ (v) and Gs′ (v) are known as Rosenbluth potentials (Rosenbluth,
MacDonald, and Judd 1957), and can easily be seen to satisfy

∇2
vHs′ = −4π fs′ (v), (3.110)

∇2
vGs′ = 2 Hs′ (v), (3.111)

where ∇2
v denotes a velocity-space Laplacian operator. The former result follows

because ∇2
v (1/v) = −4π δ(v), and the latter because ∇2

v (v) = 2/v.
When expressed in terms of the Rosenbluth potentials, the Landau collision op-

erator, (3.93), takes the form

Css′ = −Γss′
∂

∂vα

(
ms

ms′

∂Hs′

∂vα
fs −

1
2
∂2 Gs′

∂vα ∂vβ

∂ fs

∂vβ

)
= −Γss′

[(
1 +

ms

ms′

)
∂

∂vα

(
∂Hs′

∂vα
fs

)
−

1
2

∂2

∂vα ∂vβ

(
∂2 Gs′

∂vα ∂vβ
fs

)]
, (3.112)

where

Γss′ =
2 γss′

m2
s

=

(
es es′

4π ε0 ms

)2

4π lnΛc. (3.113)

3.10 COULOMB LOGARITHM

According to Equation (3.85), the Coulomb logarithm can be written

lnΛc =

∫
dχ
χ
, (3.114)

where we have made use of the fact that scattering angle χ is small, Obviously, the
integral appearing in the previous expression diverges at both large and small χ.

The divergence of the integral on the right-hand side of the previous equation
at large χ is a consequence of the breakdown of the small-angle approximation.
The standard prescription for avoiding this divergence is to truncate the integral at
some χmax above which the small-angle approximation becomes invalid. According
to Equation (3.84), this truncation is equivalent to neglecting all collisions whose
impact parameters fall below the value

bmin '
es es′

2π ε0 µss′ u2
ss′
. (3.115)
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The ultimate justification for the truncation of the integral appearing in Equation
(3.114) at large χ is the idea that Coulomb collisions are dominated by small-angle
scattering events, and that the occasional large-angle scattering events have a negli-
gible effect on the scattering statistics. Unfortunately, this is not quite true (if it were
then the integral would converge at large χ). However, the rare large-angle scattering
events only make a relatively weak logarithmic contribution to the scattering statis-
tics.

Making the estimate (1/2) µss′ u2
ss′ ' T , where T is the assumed common tem-

perature of the two colliding species, we obtain

bmin '
es es′

4π ε0 T
= rc, (3.116)

where rc is the classical distance of closest approach introduced in Section 1.6. How-
ever, as mentioned in Section 1.10, it is possible for the classical distance of closest
approach to fall below the de Broglie wavelength of one or both of the colliding parti-
cles, even in the case of a weakly coupled plasma. In this situation, the most sensible
thing to do is to approximate bmin as the larger de Broglie wavelength (Spitzer 1956;
Braginskii 1965).

The divergence of the integral on the right-hand side of Equation (3.114) at small
χ is a consequence of the infinite range of the Coulomb potential. The standard pre-
scription for avoiding this divergence is to take the Debye shielding of the Coulomb
potential into account. (See Section 1.5.) This is equivalent to neglecting all colli-
sions whose impact parameters exceed the value

bmax = λD, (3.117)

where λD is the Debye length. Of course, Debye shielding is a many-particle effect.
Hence, the Landau collision operator can no longer be regarded as a pure two-body
collision operator. Fortunately, however, many-particle effects only make a relatively
weak logarithmic contribution to the operator.

According to Equations (3.86), (3.116), and (3.117),

lnΛc = ln
(

bmax

bmin

)
= ln

(
λD

rc

)
. (3.118)

Thus, we deduce from Equation (1.20) that

lnΛc ' lnΛ. (3.119)

In other words, the Coulomb logarithm is approximately equal to the natural loga-
rithm of the plasma parameter. The fact that the plasma parameter is much larger
than unity in a weakly coupled plasma implies that the Coulomb logarithm is large
compared to unity in such a plasma. In fact, lnΛc lies in the range 10–20 for typi-
cal weakly coupled plasmas. It also follows that bmax � bmin in a weakly coupled
plasma, which means that there is a large range of impact parameters for which it is
accurate to treat Coulomb collisions as small-angle two-body scattering events.
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The conventional definition of the Coulomb logarithm is as follows (Richardson
2019). For a species-s particle, with mass ms, charge es, number density ns, and tem-
perature Ts, scattered by species-s′ particles, with mass ms′ , charge es′ , number den-
sity ns′ , and temperature Ts′ , the Coulomb logarithm is defined lnΛc = ln(bmax/bmin).
Here, bmin is the larger of es es′/(4π ε0 µss′ u2

ss′ ) and ~/(2 µss′ uss′ ), averaged over both
particle distributions, where µss′ = ms ms′/(ms + ms′ ) and uss′ = vs − vs′ . Further-
more, bmax = (

∑
s ns e2

s/ε0 Ts)−1/2, where the summation extends over all species, s,
for which ū2

ss′ . Ts/ms.
Consider a quasi-neutral plasma consisting of electrons of mass me, charge −e,

number density ne, temperature Te, along with ions of mass mi, charge +e, number
density ni = ne, and temperature Ti. For thermal (i.e., Maxwellian) electron-electron
collisions, we obtain (Richardson 2019)

lnΛc = 23.5 − ln
(
n1/2

e T−5/4
e

)
−

[
10−5 + (ln Te − 2)2/16

]1/2
. (3.120)

Likewise, for thermal electron-ion collisions

lnΛc = 24 − ln
(
n1/2

e T−1
e

)
10 eV < Te,

lnΛc = 23 − ln
(
n1/2

e T−3/2
e

)
Te < 10 eV. (3.121)

Finally, for thermal ion-ion collisions,

lnΛc = 23 − ln
(
n1/2

e T−3/2
i

)
. (3.122)

Here, ne is measured in units of cm−3, and all species temperatures are measured in
units of electron-volts.

The standard approach in plasma physics is to treat the Coulomb logarithm as a
constant, with a value determined by the ambient electron number density, and the
ambient electron and ion temperatures, as has just been described. This approxima-
tion ensures that the Landau collision operator, Css′ ( fs, fs′ ), is strictly bilinear in its
two arguments.

3.11 BOLTZMANN H-THEOREM

Consider a spatially uniform plasma in the absence of electromagnetic fields. The
kinetic equation, (3.9), reduces to

∂ fs

∂t
=

∑
s′

Css′ ( fs, fs′ ). (3.123)

Let us investigate the properties of this equation.
Consider the quantity

H =
∑

s

∫
fs ln fs d3vs. (3.124)
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It follows from Equation (3.123) that

dH
dt

=
∑
s,s′

∫
(1 + ln fs) Css′ ( fs, fs′ ) d3vs. (3.125)

Making use of the Boltzmann form of the collision operator, (3.23), the previous
equation becomes

dH
dt

=
∑
s,s′

∫ ∫ ∫ ∫
uss′ σ

′
ss′ (1 + ln fs) ( f ′s f ′s′ − fs fs′ ) d3vs d3vs′ d3v′s d3v′s′ ,

(3.126)

where σ′ss′ is short-hand for σ′(vs, vs′ ; v′s, v′s′ ). Suppose that we swap the dummy
species labels s and s′. This process leaves both uss′ = |vs − vs′ | and the value of
the integral unchanged. According to Equation (3.27), it also leaves the quantity
σ′(vs, vs′ ; v′s, v′s′ ) unchanged. Hence, we deduce that

dH
dt

=
∑
s,s′

∫ ∫ ∫ ∫
uss′ σ

′
ss′ (1+ ln fs′ ) ( f ′s f ′s′ − fs fs′ ) d3vs d3vs′ d3v′s d3v′s′ . (3.127)

Suppose that we swap primed and unprimed dummy variables of integration in Equa-
tion (3.126). This leaves the value of the integral unchanged. Making use of Equa-
tion (3.18), as well as the fact that u′ss′ = uss′ , we obtain

dH
dt

= −
∑
s,s′

∫ ∫ ∫ ∫
uss′ σ

′
ss′ (1 + ln f ′s ) ( f ′s f ′s′ − fs fs′ ) d3vs d3vs′ d3v′s d3v′s′ .

(3.128)
Finally, swapping primed and unprimed variables in Equation (3.127) yields

dH
dt

= −
∑
s,s′

∫ ∫ ∫ ∫
uss′ σ

′
ss′ (1 + ln f ′s′ ) ( f ′s f ′s′ − fs fs′ ) d3vs d3vs′ d3v′s d3vs′ .

(3.129)
The previous four equations can be combined to give

dH
dt

=
∑
s,s′

1
4

∫ ∫ ∫ ∫
uss′ σ

′
ss′ ln

(
fs fs′

f ′s f ′s′

)
( f ′s f ′s′ − fs fs′ ) d3vs d3vs′ d3v′s d3v′s′ .

(3.130)
Now, ln( fs fs′/ f ′s f ′s′ ) is positive when f ′s f ′s′ − fs fs′ is negative, and vice versa. We,
therefore, deduce that the integral on the right-hand side of the previous expression
can never take a positive value. In other words,

dH
dt
≤ 0. (3.131)

This result is known as the Boltzmann H-theorem (Boltzmann 1995).
In fact, the quantity H is bounded below (i.e., it cannot take the value minus

infinity). Hence, H cannot decrease indefinitely, but must tend to a limit in which
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dH/dt = 0. According to Equation (3.130), the distribution functions associated with
this limiting state are characterized by

fs fs′ = f ′s f ′s′ , (3.132)

or, equivalently,
ln fs + ln fs′ − ln f ′s − ln f ′s′ = 0. (3.133)

Consider distribution functions that satisfy

ln fs = as + ms b · vs + c ms v
2
s , (3.134)

where s is a species label, ms is the particle mass, and as, b, and c are constants. It
follows that

ln fs + ln fs′ − ln f ′s − ln f ′s′ = b · (ms vs + ms′ vs′ − ms v′s − ms′ v′s′ )

+ c (ms v
2
s + ms′ v

2
s′ − ms v

′2
s − ms′ v

′2
s′ ). (3.135)

However, for an elastic collision, momentum conservation implies that (see Sec-
tion 3.3)

ms vs + ms′ vs′ = ms v′s + ms′ v′s′ , (3.136)

whereas energy conservation yields (see Section 3.3)

ms v
2
s + ms′ v

2
s′ = ms v

′2
s + ms′ v

′2
s′ . (3.137)

In other words, distribution functions that satisfy Equation (3.134) automatically sat-
isfy Equation (3.133). We, thus, conclude that collisions act to drive the distribution
functions for the colliding particles toward particular distribution functions of the
form (3.134). [Incidentally, elastic collisions generally only conserve particle num-
ber, particle momentum, and particle energy. These conservation laws correspond to
the three terms appearing on the right-hand side of Equation (3.134). Hence, in the
absence of other conservation laws, we can be sure that Equation (3.134) is the most
general expression that satisfies Equation (3.133).]

Without loss of generality, we can set

as = ln
[
ns

( ms

2πT

)3/2
]
−

ms V2

2 T
, (3.138)

b =
1
T

V, (3.139)

c = −
1

2 T
, (3.140)

where ns, V, and T are constants. In this case, Equation (3.134) becomes

fs = ns

( ms

2πT

)3/2
exp

[
−

ms (vs − V)2

2 T

]
, (3.141)
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which we recognize as a Maxwellian distribution function (Reif 1965). It is easily
demonstrated that

ns =

∫
fs d3vs, (3.142)

ns V =

∫
vs fs d3vs, (3.143)

3
2

ns T =

∫
1
2

ms v
2
s fs d3vs. (3.144)

These relations allow us to identify the constants ns, V, and T with the species-s
number density, mean flow velocity, and kinetic temperature, respectively. We con-
clude that collisions tend to relax the distribution functions of the colliding particles
toward Maxwellian distributions characterized by a common mean flow velocity and
a common temperature.

3.12 COLLISION OPERATOR FOR MAXWELLIAN
DISTRIBUTIONS

Suppose that the species-s and species-s′ distribution functions are Maxwellian, but
are characterized by different number densities, mean flow velocities, and kinetic
temperatures. Let us calculate the collision operator. Without loss of generality, we
can choose to work in a frame of reference in which the species-s′ mean flow velocity
is zero. It follows that

fs(v) =
ns

π3/2 v3
t s

exp
(
−
|v − Vs|

2

v2
t s

)
, (3.145)

fs′ (v) =
ns′

π3/2 v3
t s′

exp
(
−
v2

v2
t s′

)
, (3.146)

where vt s =
√

2 Ts/ms and vt s′ =
√

2 Ts′/ms′ are the species-s and species-s′ thermal
velocities, respectively. Moreover, ns, Vs, and Ts are the number density, mean flow
velocity, and temperature of species s, whereas ns′ , 0, and Ts′ are the corresponding
quantities for species s′.

Given that fs′ (v) is isotropic in velocity space, Equations (3.110) and (3.111)
yield

d
dv

(
v2 dHs′

dv

)
= −4π v2 fs′ (v), (3.147)

d
dv

(
v2 dGs′

dv

)
= 2 v2 Hs′ (v). (3.148)
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Making use of Equation (3.146), we obtain

d2(ζ Hs′ )
dζ2 = −4π v2

t s′ ζ fs′ (ζ) = −
4
√
π

ns′

vt s′
ζ e−ζ

2
=

2
√
π

ns′

vt s′

d
dζ

e−ζ
2
, (3.149)

d2(ζGs′ )
dζ2 = 2 v2

t s′ ζ Hs′ (ζ), (3.150)

where ζ = v/vt s′ . Equation (3.149) can be integrated, subject to the boundary condi-
tion that Hs′ (ζ) remain finite at ζ = 0, to give

Hs′ (ζ) =
ns′

vt s′

erf(ζ)
ζ

, (3.151)

where

erf(ζ) =
2
√
π

∫ ζ

0
e−t2

dt (3.152)

is an error function (Abramowitz and Stegun 1965). Hence, Equation (3.150) yields

d2

dζ2 (ζGs′ ) = 2 ns′ vt s′ erf(ζ), (3.153)

which can be integrated, subject to the constraint that Gs′ be finite at ζ = 0, to give

Gs′ (ζ) =
ns′ vt s′

2 ζ

[
ζ

d erf
dζ

+
(
1 + 2 ζ2

)
erf(ζ)

]
. (3.154)

It follows that

∂Hs′

∂vα
= −ns′ F1(ζ)

vα

v3 , (3.155)

∂2Gs′

∂vα vβ
=

ns′ v
2
t s′

2 v3

{
−F2(ζ) δαβ + [F2(ζ) + 2 F1(ζ)]

vα vβ

v2

}
, (3.156)

where

F1(ζ) = erf(ζ) − ζ
d erf
dζ

, (3.157)

F2(ζ) =
(
1 − 2 ζ2

)
erf(ζ) − ζ

d erf
dζ

. (3.158)

Thus, Equation (3.112) yields

Css′ =
γss′ ns′

ms ms′

∂

∂vα

[
2 F1(ζ)

vα
v3 fs +

ms′

ms

v2
t s′

2 v3

{
−F2(ζ) δαβ + [F2(ζ) + 2 F1(ζ)]

vα vβ

v2

}
∂ fs

∂vβ

]
.

(3.159)

Now, it is clear from Equation (3.145) that

∂ fs

∂vα
= −

2 (vα − Vsα)
v2

t s
fs. (3.160)
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The previous two equations imply that

Css′ =
γss′ ns′

ms ms′

∂

∂vα

([
2
(
1 −

Ts′

Ts

)
F1(ζ)

vα
v3 −

Ts′

Ts

Vs β

v3

{
F2(ζ) δαβ − [F2(ζ) + 2 F1(ζ)]

vα vβ

v2

}]
fs

)
.

(3.161)

Suppose that the drift velocity, Vs, is much smaller than the thermal velocity, vt s,
of species-s particles. In this case, we can expand the distribution function (3.145)
such that

fs(v) '
ns

π3/2 v3
t s

exp
(
−
v2

v2
t s

) (
1 +

2 v · Vs

v2
t s

)
. (3.162)

Neglecting terms that are second order in Vs/vt s, the previous two equations lead to
the following final expression for the collision operator for species with Maxwellian
distribution functions:

Css′ '
γss′ ns ns′

π3/2 ms ms′ v
3
t s

∂

∂vα

{
exp

(
−
v2

v2
t s

) [
2
(
1 −

Ts′

Ts

)
F1(ζ)

vα

v3

(
1 +

2 vβ Vs β

v2
t s

)
−

Ts′

Ts

Vs β

v3

{
F2(ζ) δαβ − [F2(ζ) + 2 F1(ζ)]

vα vβ

v2

}]}
, (3.163)

where ζ = v/vt s′ .

3.13 MOMENTS OF COLLISION OPERATOR

The most important moments of the collision operator (see Section 4.3) are the fric-
tion force density,

Fss′ (r, t) =

∫
ms vs Css′ d3vs, (3.164)

acting on species-s particles due to collisions with species-s′ particles, the friction
force density,

Fss′ (r, t) =

∫
ms′ vs′ Cs′ s d3vs′ , (3.165)

acting on species-s′ particles due to collisions with species-s particles, the collisional
heating rate density,

Wss′ (r, t) =

∫
1
2

ms v
2
s Css′ d3vs, (3.166)

experienced by species-s particles due to collisions with species-s′ particles, and the
collisional heating rate density,

Wss′ (r, t) =

∫
1
2

ms′ v
2
s′ Css′ d3vs′ , (3.167)

experienced by species-s′ particles due to collisions with species-s particles. How-
ever, as is clear from Equations (3.35) and (3.37),

Fs′ s = −Fss′ , (3.168)
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and
Ws′ s = −Wss′ . (3.169)

Hence, we only need to determine Fss′ and Wss′ . Let us calculate these quantities
using the Maxwellian collision operator (3.163).

Equations (3.163) and (3.164) imply that

Fss′ α = −
γss′ ns ns′

π3/2 ms′ v
3
t s

∫
exp

(
−
v2

v2
t s

) {
2
(
1 −

Ts′

Ts

)
F1

vα

v3

(
1 +

2 vβ Vs β

v2
t s

)
−

Ts′

Ts

Vs β

v3

[
F2 δαβ − (F2 + 2 F1)

vα vβ

v2

]}
d3v, (3.170)

where we have integrated by parts. However, it follows from symmetry that∫
H(v) vα d3v = 0, (3.171)∫

H(v) vα vβ d3v =
δαβ

3

∫
H(v) v2 d3v, (3.172)∫

H(v) vα vβ vγ d3v = 0, (3.173)

where H(v) is a general function. Hence, we obtain

Fss′ α = −
2 γss′ ns ns′ Vsα

3π3/2 ms′ v
3
t s

∫
exp

(
−
v2

v2
t s

) [
2
(
1 −

Ts′

Ts

)
F1

v v2
t s
−

Ts′

Ts

F2 − F1

v3

]
d3v,

(3.174)
which yields

Fss′ α = −
16 γss′ ns ns′ Vsα

3π1/2 ms′ v
3
t s

∫ ∞

0
e−ξ ζ

2
[
2
(
1 −

Ts′

Ts

)
ζ F1(ζ) +

Ts′

Ts
ζ erf(ζ)

]
dζ,

(3.175)
where ζ = v/vt s′ and ξ = v2

t s′/v
2
t s. It is easily demonstrated that (Abramowitz and

Stegun 1965) ∫ ∞

0
e−ξ ζ

2
ζ F1(ζ) dζ =

1
2 ξ (1 + ξ)3/2 , (3.176)∫ ∞

0
e−ξ ζ

2
ζ erf(ζ) dζ =

1
2 ξ (1 + ξ)1/2 . (3.177)

Thus, we get

Fss′ = −
8 γss′ ns ns′

3π1/2 µss′ (v2
t s + v2

t s′ )3/2
Vs. (3.178)

Suppose that we transform to a new frame of reference that moves with velocity
U with respect to our original frame. In the new reference frame,

F′ss′ =

∫
ma (vs − U) Css′ d3vs = Fss′ − U

∫
ms Css′ d3vs = Fss′ , (3.179)
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where use has been made of the collisional conservation law (3.31). It follows that
Fss′ is invariant under Galilean transformations. This implies that the quantity Vs, ap-
pearing in Equation (3.178), must be reinterpreted as the relative mean flow velocity,
Vss′ = Vs − Vs′ , between species-s and species-s′ particles. Of course, Vss′ = Vs in
our adopted reference frame in which Vs′ = 0. It follows that the general expression
for the friction force density is

Fss′ = −
8 γss′ ns ns′

3π1/2 µss′ (v2
t s + v2

t s′ )3/2
Vss′ . (3.180)

Note that this expression satisfies the collisional momentum conservation constraint
(3.168). Furthermore, it is clear that the collisional friction force acts to reduce the
relative mean flow velocity, Vss′ , of species-s and species-s′ particles. Note that Fss =

0. In other words, a plasma species cannot exert a frictional force on itself.
Equations (3.163) and (3.166) imply that

Wss′ = −
γss′ ns ns′

π3/2 ms′ v
3
t s

∫
vα exp

(
−
v2

v2
t s

) {
2
(
1 −

Ts′

Ts

)
F1

vα

v3

(
1 +

2 vβ Vs β

v2
t s

)
−

Ts′

Ts

Vs β

v3

[
F2 δαβ − (F2 + 2 F1)

vα vβ

v2

]}
d3v, (3.181)

where we have integrated by parts. Making use of Equations (3.171)–(3.173), the
previous expression reduces to

Wss′ = −
2 γss′ ns ns′

π3/2 ms′ v
3
t s

(
1 −

Ts′

Ts

) ∫
exp

(
−
v2

v2
t s

)
F1

v
d3v, (3.182)

which gives

Wss′ = −
8 γss′ ns ns′ v

2
t s′

π1/2 ms′ v
3
t s

(
1 −

Ts′

Ts

) ∫ ∞

0
e−ξ ζ

2
ζ F1(ζ) dζ. (3.183)

It follows from Equation (3.176) that

Wss′ = −
8 γss′ ns ns′

π1/2 ms ms′ (v2
t s + v2

t s′ )3/2
(Ts − Ts′ ). (3.184)

Note that this expression satisfies the collisional energy conservation constraint
(3.169). Furthermore, it is clear that the collisional heating acts to reduce the tem-
perature difference of species-s and species-s′ particles. Note that Wss = 0. In other
words, a plasma species cannot heat itself by means of collisions.

3.14 COLLISION TIMES

It is conventional to define the collision time, τss′ , associated with collisions of
species-s particles with species-s′ particles such that

Fss′ = −
ms ns

τss′
Vss′ . (3.185)
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It follows from Equation (3.180) that

τss′ =
3π1/2 ms µss′ (v2

t s + v2
t s′ )

3/2

8 γss′ ns′
. (3.186)

Furthermore, when expressed in terms of the collision time, expression (3.184) for
the collisional heating rate becomes

Wss′ = −
3 µss′ ns

τss′ ms′
(Ts − Ts′ ). (3.187)

According to the definition (3.185), the collision time, τss′ , is the time required
for collisions with species-s′ particles to decelerate species-s particles to such an
extent that the mean drift velocity of the latter particles with respect to the former
is eliminated. At the individual particle level, the collision time is the mean time
required for the direction of motion of an individual species-s particle to deviate
through approximately 90◦ as a consequence of collisions with species-s′ particles.

Consider a quasi-neutral plasma consisting of electrons of mass me, charge −e,
and number density ne, and along with ions of mass mi, charge +e, and number
density ni = ne. Let the two species have Maxwellian distributions characterized
by a common temperature T , and a small relative drift velocity. It follows, from
the previous analysis, that we can identify four different collision times. First, the
electron-electron collision time,

τee =
12π3/2 ε2

0 m1/2
e T 3/2

lnΛc e4 ne
, (3.188)

which is the mean time required for the direction of motion of an individual elec-
tron to deviate through approximately 90◦ as a consequence of collisions with other
electrons. Second, the electron-ion collision time,

τei =
6
√

2π3/2 ε2
0 m1/2

e T 3/2

lnΛc e4 ne
, (3.189)

which is the mean time required for the direction of motion of an individual electron
to deviate through approximately 90◦ as a consequence of collisions with ions. (Here,
we have made use of the fact that me � mi.) Third, the ion-ion collision time,

τii =
12π3/2 ε2

0 m1/2
i T 3/2

lnΛc e4 ne
, (3.190)

which is the mean time required for the direction of motion of an individual ion to
deviate through approximately 90◦ as a consequence of collisions with other ions.
Finally, the ion-electron collision time,

τie =
6
√

2π3/2 ε2
0 mi T 3/2

lnΛc e4 ne m1/2
e

, (3.191)
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which is the mean time required for the direction of motion of an individual ion to
deviate through approximately 90◦ as a consequence of collisions with electrons.
Note that these collision times are not all of the same magnitude, as a consequence
of the large difference between the electron and ion masses. In fact,

τee ∼ τei ∼ (me/mi)1/2 τii ∼ (mi/me) τie, (3.192)

which implies that electrons scatter electrons (through 90◦) at about the same rate
that ions scatter electrons, but that ions scatter ions at a significantly lower rate than
ions scatter electrons, and, finally, that electrons scatter ions at a significantly lower
rate than ions scatter ions.

The collision frequency is simply the inverse of the collision time. Thus, the
electron-electron collision frequency is written

νee ≡
1
τee

=
lnΛc e4 ne

12 π3/2 ε2
0 m1/2

e T 3/2
. (3.193)

Given that lnΛc ∼ lnΛ (see Section 3.10), where Λ = 4π ε3/2
0 T 3/2/(e3 n1/2

e ) is the
plasma parameter (see Section 1.6), we obtain the estimate (see Section 1.7)

νee ∼
lnΛ
Λ

Πe (3.194)

where Πe = (ne e2/ε0 me)1/2 is the electron plasma frequency (see Section 1.4). Like-
wise, the ion-ion collision frequency is such that

νii ≡
1
τii
∼

lnΛ
Λ

Πi, (3.195)

where Πi = (ni e2/ε0 mi)1/2 is the ion plasma frequency.

3.15 EXERCISES

1. Consider the Maxwellian distribution

f (v) = n
( m
2πT

)3/2
exp

[
−

m (v − V)2

2 T

]
.

Demonstrate that

n =

∫
f d3v,

n V =

∫
v f d3v,

3
2

n T =

∫
1
2

m v2 f d3v.
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2. The species-s entropy per unit volume is conventionally defined as

ss = −

∫
fs ln fs d3vs.

The Boltzmann H-theorem thus states that collisions drive the system toward
a maximum entropy state characterized by Maxwellian distribution functions
with common mean velocities and common temperatures. Demonstrate that
for a Maxwellian distribution,

fs = ns

(
ms

2πTs

)3/2

exp
(
−

m v2
s

2 Ts

)
,

the entropy per unit volume takes the form

ss = ns

ln T 3/2
s

ns

 +
3
2

ln
(

2π
ms

)
+

3
2

 .
3. The Landau collision operator is written

Css′ ( fs, fs′ ) =
γss′

ms

∂

∂vs
·

∫
wss′ · Jss′ d3vs′ ,

where

γss′ =

(
es es′

4π ε0

)2

2π lnΛc,

wss′ =
u2

ss′ I − uss′uss′

u3
ss′

,

uss′ = |vs − vs′ |,

Jss′ =
∂ fs

∂vs

fs′

ms
−

fs

ms′

∂ fs′

∂vs′
.

Demonstrate directly that this collision operator satisfies the same conservation
laws as the Boltzmann collision operator. Namely,∫

Css′ d3vs = 0,∫
ms vs Css′ d3vs = −

∫
ms′ vs′ Cs′ s d3vs′ ,∫

1
2

ms v
2
s Css′ d3vs = −

∫
1
2

ms′ v
2
s′ Cs′ s d3vs′ .
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Plasma Fluid Theory

4.1 INTRODUCTION

In plasma fluid theory, a plasma is characterized by a few local parameters—such
as the particle density, the kinetic temperature, and the flow velocity—the time evo-
lutions of which are determined by means of fluid equations. These equations are
analogous to, but generally more complicated than, the equations of gas dynamics.

Fluid equations are conventionally obtained by taking velocity space moments of
the kinetic equation (see Section 3.2),

∂ fs

∂t
+ v · ∇ fs + as · ∇v fs = Cs( f ). (4.1)

Here, ∇ ≡ ∂/∂r, ∇v ≡ ∂/∂v, and

as =
es

ms
(E + v × B). (4.2)

Furthermore, es and ms are the species-s electrical charge and mass, respectively,
whereas E and B are the ensemble-averaged electromagnetic fields.

In general, it is extremely difficult to solve the kinetic equation directly, because
of the complexity of the collision operator. However, there are some situations in
which collisions can be completely neglected. In such cases, the kinetic equation
simplifies to give the so-called Vlasov equation (Vlasov 1938),

∂ fs

∂t
+ v · ∇ fs + as · ∇v fs = 0. (4.3)

The Vlasov equation is tractable in sufficiently simple geometry. (See Chapter 7.)
Nevertheless, the fluid approach possesses significant advantages, even in the Vlasov
limit. These advantages are as follows.

First, fluid equations involve fewer dimensions than the Vlasov equation. That
is, three spatial dimensions instead of six phase-space dimensions. This advantage is
especially important in computer simulations.
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Second, the fluid description is intuitively appealing. We immediately understand
the significance of fluid quantities such as density and temperature, whereas the sig-
nificance of distribution functions is far less obvious. Moreover, fluid variables are
relatively easy to measure in experiments, whereas, in most cases, it is extraordinar-
ily difficult to measure a distribution function accurately. There seems remarkably
little point in centering our theoretical description of plasmas on something that we
cannot generally measure.

Finally, the kinetic approach to plasma physics is spectacularly inefficient. The
species distribution functions fs provide vastly more information than is needed to
obtain the constitutive relations [i.e., Equations (3.1) and (3.2)] that close Maxwell’s
equations. (See Section 3.2.) After all, these relations only depend on the two lowest
moments of the species distribution functions.

4.2 MOMENTS OF DISTRIBUTION FUNCTION

The kth velocity space moment of the (ensemble-averaged) distribution function
fs(r, v, t) is written

Mk(r, t) =

∫
vv · · · v fs(r, v, t) d3v, (4.4)

with k factors of v. Clearly, Mk is a tensor of rank k (Riley 1974).
The set Mk, for k = 0, 1, 2, · · · , can be viewed as an alternative description of the

distribution function that uniquely specifies fs when the latter is sufficiently smooth.
For example, a (displaced) Gaussian distribution function is uniquely specified by
three moments: M0, the vector M1, and the scalar formed by contracting M2.

The low-order moments all have simple physical interpretations. First, we have
the particle number density,

ns(r, t) =

∫
fs(r, v, t) d3v, (4.5)

and the particle flux,

ns Vs(r, t) =

∫
v fs(r, v, t) d3v. (4.6)

The quantity Vs is, of course, the flow velocity. The constitutive relations, (3.1) and
(3.2), are determined by these lowest moments. In fact,

ρc =
∑

s

es ns, (4.7)

j =
∑

s

es ns Vs. (4.8)

The second-order moment, describing the flow of momentum in the laboratory
frame, is called the stress tensor, and takes the form

Ps(r, t) =

∫
ms vv fs(r, v, t) d3v. (4.9)
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Finally, there is an important third-order moment measuring the energy flux,

Qs(r, t) =

∫
1
2

ms v
2 v fs(r, v, t) d3v. (4.10)

It is often convenient to measure the second- and third-order moments in the rest-
frame of the species under consideration. In this case, the moments have different
names. The stress tensor measured in the rest-frame is called the pressure tensor, ps,
whereas the energy flux density becomes the heat flux, qs. We introduce the relative
velocity,

us ≡ v − Vs, (4.11)

in order to write
ps(r, t) =

∫
ms usus fs(r, v, t) d3v, (4.12)

and
qs(r, t) =

∫
1
2

ms u2
s us fs(r, v, t) d3v. (4.13)

The trace of the pressure tensor measures the ordinary (or scalar) pressure,

ps ≡
1
3

Tr (ps). (4.14)

In fact, (3/2) ps is the kinetic energy density of species s: that is,

3
2

ps =

∫
1
2

ms u2
s fs d3v. (4.15)

In thermodynamic equilibrium, the distribution function becomes a Maxwellian char-
acterized by some temperature T , and Equation (4.15) yields p = n T . It is, therefore,
natural to define the (kinetic) temperature as

Ts ≡
ps

ns
. (4.16)

Of course, the moments measured in the two different frames are related. By
direct substitution, it is easily verified that

Ps = ps + ms ns VsVs, (4.17)

Qs = qs + ps · Vs +
3
2

ps Vs +
1
2

ms ns V2
s Vs. (4.18)

4.3 MOMENTS OF COLLISION OPERATOR

Boltzmann’s collision operator for a neutral gas considers only binary collisions, and
is, therefore, bilinear in the distribution functions of the two colliding species. (See
Section 3.4.) In other words,

Cs( f ) =
∑

s′
Css′ ( fs, fs′ ), (4.19)
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where Css′ is linear in each of its arguments. Unfortunately, such bilinearity is
not strictly valid for the case of Coulomb collisions in a plasma. Because of the
long-range nature of the Coulomb interaction, the closest analogue to ordinary two-
particle interaction is modified by Debye shielding, which is an intrinsically many-
body effect. Fortunately, the departure from bilinearity is logarithmic in a weakly
coupled plasma, and can, therefore, be neglected to a fairly good approximation (be-
cause a logarithm is a comparatively weakly varying function). (See Section 3.10.)
Thus, from now on, Css′ is presumed to be bilinear.

It is important to realize that there is no simple relationship between the quantity
Css′ , which describes the effect on species s of collisions with species s′, and the
quantity Cs′ s. The two operators can have quite distinct mathematical forms (for
example, where the masses ms and ms′ are significantly different), and they do not
appear in the same equations.

Neutral particle collisions are characterized by Boltzmann’s collisional conser-
vation laws. (See Section 3.5.) In fact, the collisional process conserves particles,
momentum, and energy at each point in space. We expect the same local conserva-
tion laws to hold for Coulomb collisions in a plasma, because the maximum range of
the Coulomb force in a plasma is the Debye length, which is assumed to be vanish-
ingly small.

Collisional particle conservation is expressed as∫
Css′ d3v = 0. (4.20)

Collisional momentum conservation requires that∫
ms v Css′ d3v = −

∫
ms′ v Cs′ s d3v. (4.21)

In other words, there is zero net momentum exchanged between species s and s′. It
is useful to introduce the rate of collisional momentum exchange, which is called the
collisional friction force (per unit volume), or simply the friction force:

Fss′ ≡

∫
ms v Css′ d3v. (4.22)

Clearly, Fss′ is the momentum-moment of the collision operator. The total friction
force experienced by species s is

Fs ≡
∑

s′
Fss′ . (4.23)

Momentum conservation is expressed in detailed form as

Fss′ = −Fs′ s, (4.24)

and in nondetailed form as ∑
s

Fs = 0. (4.25)
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Collisional energy conservation requires the quantity

Wss′ ≡

∫
1
2

ms v
2 Css′ d3v (4.26)

to be conserved in collisions. In other words,

Wss′ + Ws′ s = 0. (4.27)

An alternative collisional energy-moment is

wss′ ≡

∫
1
2

ms u2
s Css′ d3v. (4.28)

This is the rate of kinetic energy change (per unit volume) experienced by species s,
due to collisions with species s′, measured in the rest frame of species s. The total
rate of energy change for species s is

ws ≡
∑

s′
wss′ . (4.29)

It is easily verified that
Wss′ = wss′ + Vs · Fss′ . (4.30)

Thus, the collisional energy conservation law can be written in detailed form as

wss′ + ws′ s + (Vs − Vs′ ) · Fss′ = 0, (4.31)

or in nondetailed form as ∑
s

(ws + Vs · Fs) = 0. (4.32)

4.4 MOMENTS OF KINETIC EQUATION

We obtain fluid equations by taking appropriate moments of the kinetic equation,
Equation (4.1). It is convenient to rearrange the acceleration term as follows:

as · ∇v fs = ∇v · (as fs). (4.33)

The two forms are equivalent because flow in velocity space under the Lorentz force
is incompressible: that is,

∇v · as = 0. (4.34)

Thus, Equation (4.1) becomes

∂ fs

∂t
+ ∇ · (v fs) + ∇v · (as fs) = Cs( f ). (4.35)

The rearrangement of the flow term is, of course, trivial, because v is independent of
r.
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The kth moment of the kinetic equation is obtained by multiplying the previous
equation by k powers of v, and integrating over velocity space. The flow term is
simplified by pulling the divergence outside the velocity integral. The acceleration
term is treated by partial integration. These two terms couple the kth moment to the
(k + 1) th and (k − 1) th moments, respectively.

Making use of the collisional conservation laws, the zeroth moment of Equa-
tion (4.35) yields the continuity equation for species s:

∂ns

∂t
+ ∇ · (ns Vs) = 0. (4.36)

Likewise, the first moment gives the momentum conservation equation for species s:

∂(ms ns Vs)
∂t

+ ∇ · Ps − es ns (E + Vs × B) = Fs. (4.37)

Finally, the contracted second moment yields the energy conservation equation for
species s:

∂

∂t

(
3
2

ps +
1
2

ms ns V2
s

)
+ ∇ ·Qs − es ns E · Vs = ws + Vs · Fs. (4.38)

The interpretation of Equations (4.36)–(4.38) as conservation laws is straightfor-
ward. Suppose that G is some physical quantity (for instance, the total number of
particles, the total energy, and so on), and g(r, t) is its density:

G =

∫
g d3r. (4.39)

If G is conserved then g must evolve according to

∂g

∂t
+ ∇ · g = ∆g, (4.40)

where g is the flux density of G, ∆g is the local rate per unit volume at which G
is created or exchanged with other entities in the fluid. According to the previous
equation, the density of G at some point changes because there is net flow of G
toward or away from that point (characterized by the divergence term), or because of
local sources or sinks of G (characterized by the right-hand side).

Applying this reasoning to Equation (4.36), we see that ns Vs is indeed the
species-s particle flux, and that there are no local sources or sinks of species-s parti-
cles.1 From Equation (4.37), it is apparent that the stress tensor, Ps, is the species-s
momentum flux, and that the species-s momentum is changed locally by the Lorentz
force, and by collisional friction with other species. Finally, from Equation (4.38),
we see that Qs is indeed the species-s energy flux, and that the species-s energy is
changed locally by electrical work, energy exchange with other species, and fric-
tional heating.

1In general, this is not true. Atomic or nuclear processes operating in a plasma can give rise to local
sources and sinks of particles of various species. However, if a plasma is sufficiently hot to be completely
ionized, but still cold enough to prevent nuclear reactions from occurring, then such sources and sinks are
usually negligible.
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4.5 FLUID EQUATIONS

It is conventional to rewrite our fluid equations in terms of the pressure tensor, ps,
the heat flux, qs, and the collisional heating rate in the local rest frame, ws. Substitut-
ing from Equations (4.17), (4.18), and (4.30), and performing a little tensor algebra,
Equations (4.36)–(4.38) reduce to:

dsns

dt
+ ns ∇ · Vs = 0, (4.41)

ms ns
dsVs

dt
+ ∇ · ps − es ns (E + Vs × B) = Fs, (4.42)

3
2

ds ps

dt
+

3
2

ps ∇ · Vs + ps : ∇Vs + ∇ · qs = ws. (4.43)

Here,
ds

dt
≡
∂

∂t
+ Vs · ∇ (4.44)

is the well-known convective derivative, and

p : ∇Vs ≡ psαβ
∂Vs β

∂rα
. (4.45)

In the previous expression, α and β refer to Cartesian components, and repeated
indices are summed (in accordance with the Einstein summation convention) (Riley
1974). The convective derivative, of course, measures time variation in the local rest
frame of the species-s fluid.

There is one additional refinement to our fluid equations that is worth carrying
out. We introduce the generalized viscosity tensor, πs, by writing

ps = ps I + πs, (4.46)

where I is the unit (identity) tensor. We expect the scalar pressure term to dominate if
the plasma is relatively close to thermal equilibrium. We also expect, by analogy with
conventional fluid theory, the second term to describe viscous stresses. Indeed, this
is generally the case in plasmas, although the generalized viscosity tensor can also
include terms that are quite unrelated to conventional viscosity. Equations (4.41)–
(4.43) can, thus, be rewritten:

dsns

dt
+ ns ∇ · Vs = 0, (4.47)

ms ns
dsVs

dt
+ ∇ps + ∇ · πs − es ns (E + Vs × B) = Fs, (4.48)

3
2

ds ps

dt
+

5
2

ps ∇ · Vs + πs : ∇Vs + ∇ · qs = ws. (4.49)

According to Equation (4.47), the species-s density is constant along a fluid trajec-
tory unless the species-s flow is nonsolenoidal. For this reason, the condition

∇ · Vs = 0 (4.50)
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is said to describe incompressible species-s flow. According to Equation (4.48), the
species-s flow accelerates along a fluid trajectory under the influence of the scalar
pressure gradient, the viscous stresses, the Lorentz force, and the frictional force due
to collisions with other species. Finally, according to Equation (4.49), the species-s
energy density (that is, ps) changes along a fluid trajectory because of the work done
in compressing the fluid, viscous heating, heat flow, and the local energy gain due
to collisions with other species. The electrical contribution to plasma heating, which
was explicit in Equation (4.38), has now become entirely implicit.

4.6 ENTROPY PRODUCTION

It is instructive to rewrite the species-s energy evolution equation, Equation (4.49), as
an entropy evolution equation (Hazeltine and Waelbroeck 2004). The fluid definition
of entropy density, which coincides with the thermodynamic entropy density in the
limit that the distribution function approaches a Maxwellian, is (Reif 1965)

ss = ns ln
T 3/2

s

ns

 + c, (4.51)

where c is a constant. The corresponding entropy flux is written

ss = ss Vs +
qs

Ts
. (4.52)

Clearly, entropy is convected by the fluid flow, but is also carried by the flow of
heat, in accordance with the second law of thermodynamics (Reif 1965). After some
algebra, Equation (4.49) can be rearranged to give

∂ss

∂t
+ ∇ · ss = Θs, (4.53)

where the right-hand side is given by

Θs =
ws

Ts
−
πs : ∇Vs

Ts
−

qs

Ts
·
∇Ts

Ts
. (4.54)

It follows, from our previous discussion of conservation laws, that the quantity Θs

can be regarded as the entropy production rate per unit volume for species s. Ev-
idently, entropy is produced by collisional heating, viscous heating, and heat flow
down temperature gradients.

4.7 FLUID CLOSURE

No amount of manipulation, or rearrangement, can cure our fluid equations of their
most serious defect—the fact that they are incomplete. In their present form, which is
specified in Equations (4.47)–(4.49), our equations relate interesting fluid quantities,
such as the particle number density, ns, the flow velocity, Vs, and the scalar pressure,
ps, to unknown quantities, such as the viscosity tensor, πs, the heat flux, qs, and
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the moments of the collision operator, Fs and ws. In order to complete our set of
equations, we need to use some additional information to express the latter quantities
in terms of the former. This process is known as closure.

Lack of closure is an endemic problem in fluid theory. Because each moment is
coupled to the next higher moment (for instance, the density evolution depends on
the flow velocity, the flow velocity evolution depends on the viscosity tensor, and so
on), any finite set of exact moment equations is bound to contain more unknowns
than equations.

There are two basic types of fluid closure schemes. In truncation schemes, higher
order moments of the distribution function are assumed to vanish, or are prescribed in
terms of lower moments (Grad 1958). Truncation schemes are relatively straightfor-
ward to implement, but the error associated with the closure cannot easily be deter-
mined. Asymptotic schemes, on the other hand, depend on the rigorous exploitation
of some small parameter. Asymptotic closure schemes have the advantage of pro-
viding some estimate of the error involved in the closure. On the other hand, the
asymptotic approach to closure is mathematically demanding, because it inevitably
involves working with the kinetic equation.

4.8 CHAPMAN-ENSKOG CLOSURE

The classic example of an asymptotic closure scheme is the Chapman-Enskog the-
ory of a neutral gas dominated by collisions. In this theory, the small parameter is the
ratio of the mean-free-path between collisions to the macroscopic variation length-
scale. It is instructive to briefly examine this theory, which is very well described in
a classic monograph by Chapman and Cowling (Chapman and Cowling 1953).

Consider a neutral gas consisting of identical hard-sphere molecules of mass m
and diameter σ. Admittedly, this is not a particularly physical model of a neutral gas,
but we are only considering it for illustrative purposes. The fluid equations for such
a gas are similar to Equations (4.47)–(4.49):

dn
dt

+ n∇ · V = 0, (4.55)

m n
dV
dt

+ ∇p + ∇ · π + m n g = 0, (4.56)

3
2

dp
dt

+
5
2

p∇ · V + π : ∇V + ∇ · q = 0. (4.57)

Here, n is the particle number density, V the flow velocity, p the scalar pressure, and g
the acceleration due to gravity. We have dropped the subscript s because, in this case,
there is only a single species. There is no collisional friction or heating in a single
species system. Of course, there are no electrical or magnetic forces in a neutral gas,
so we have included gravitational forces instead. The purpose of the closure scheme
is to express the viscosity tensor, π, and the heat flux, q, in terms of n, V, or p, and,
thereby, complete the set of equations.
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The mean-free-path, l, for hard-sphere molecules is given by

l =
1

√
2 π nσ2

. (4.58)

This formula is fairly easy to understand. The volume swept out by a given mol-
ecule in moving a mean-free-path must contain, on average, approximately one other
molecule. Observe that l is completely independent of the speed or mass of the
molecules. The mean-free-path is assumed to be much smaller than the variation
lengthscale, L, of macroscopic quantities, so that

ε =
l
L
� 1. (4.59)

In the Chapman-Enskog scheme, the distribution function is expanded, order by
order, in the small parameter ε:

f (r, v, t) = f0(r, v, t) + ε f1(r, v, t) + ε2 f2(r, v, t) + · · · . (4.60)

Here, f0, f1, f2, and so on are all assumed to be of the same order of magnitude. In
fact, only the first two terms in this expansion are ever calculated. To zeroth order in
ε, the kinetic equation requires that f0 be a Maxwellian:

f0(r, v, t) = n(r)
[

m
2πT (r)

]3/2

exp
[
−

m (v − V)2

2 T (r)

]
. (4.61)

Recall that p = n T . As is well known, there is zero heat flow or viscous stress asso-
ciated with a Maxwellian distribution function (Reif 1965). Thus, both the heat flux,
q, and the viscosity tensor, π, depend on the first-order nonMaxwellian correction to
the distribution function, f1.

It is possible to linearize the kinetic equation, and then rearrange it so as to obtain
an integral equation for f1 in terms of f0. This rearrangement crucially depends on
the bilinearity of the collision operator. Incidentally, the equation is integral because
the collision operator is an integral operator. The integral equation is solved by ex-
panding f1 in velocity space using Laguerre polynomials (sometimes called Sonine
polynomials) (Abramowitz and Stegun 1965). It is possible to reduce the integral
equation to an infinite set of simultaneous algebraic equations for the coefficients in
this expansion. If the expansion is truncated, after N terms, say, then these algebraic
equations can be solved for the coefficients. It turns out that the Laguerre polynomial
expansion converges very rapidly. Thus, it is conventional to keep only the first two
terms in this expansion, which is usually sufficient to ensure an accuracy of about 1
percent in the final result. Finally, the appropriate moments of f1 are taken, so as to
obtain expressions for the heat flux and the viscosity tensor. Strictly speaking, after
evaluating f1, we should then go on to evaluate f2, so as to ensure that f2 really is
negligible compared to f1. In reality, this is never done because the mathematical
difficulties involved in such a calculation are prohibitive.
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The Chapman-Enskog method outlined previously can be applied to any assumed
force law between molecules, provided that the force is sufficiently short-range (i.e.,
provided that it falls off faster with increasing separation than the Coulomb force).
For all sensible force laws, the viscosity tensor is given by

παβ = −η

(
∂Vα

∂rβ
+
∂Vβ

∂rα
−

2
3
∇ · V δαβ

)
, (4.62)

whereas the heat flux takes the form

q = −κ∇T. (4.63)

Here, η is the coefficient of viscosity, and κ is the coefficient of thermal conductivity.
It is convenient to write

η = m nχv, (4.64)

κ = n χt, (4.65)

where χv is the viscous diffusivity and χt is the thermal diffusivity. Both χv and χt

have the dimensions of length squared over time, and are, effectively, diffusion co-
efficients. For the special case of hard-sphere molecules, Chapman-Enskog theory
yields (Chapman and Cowling 1953):

χv =
75π1/2

64

(
1 +

3
202

+ · · ·

)
ν l2 = Av ν l2, (4.66)

χt =
5π1/2

16

(
1 +

1
44

+ · · ·

)
ν l2 = At ν l2. (4.67)

Here,
ν =

vt

l
(4.68)

is the collision frequency, and

vt =

√
2 T
m

(4.69)

is the thermal velocity. The first two terms in the Laguerre polynomial expansion are
shown explicitly (in the round brackets) in Equations (4.66) and (4.67).

Equations (4.66) and (4.67) have a simple physical interpretation. The viscous
and thermal diffusivities of a neutral gas can be accounted for in terms of the random-
walk diffusion of molecules with excess momentum and energy, respectively. Recall
the standard result in stochastic theory that if particles jump an average distance l, in a
random direction, ν times a second, then the diffusivity associated with such motion
is χ ∼ ν l2 (Reif 1965). Chapman-Enskog theory basically allows us to calculate
the numerical constants Av and At, multiplying ν l2 in the expressions for χv and χt,
for a given force law between molecules. Obviously, these coefficients are different
for different force laws. The expression for the mean-free-path, l, is also different for
different force laws.



82 � Plasma Physics: An Introduction (2nd Edition)

4.9 BRAGINSKII EQUATIONS

Let now consider the problem of closure in plasma fluid equations. There are, in fact,
two possible small parameters in plasmas upon which we could base an asymptotic
closure scheme. The first is the ratio of the mean-free-path, l, to the macroscopic
lengthscale, L. This is only appropriate to collisional plasmas. The second is the
ratio of the Larmor radius, ρ, to the macroscopic lengthscale, L. This is only appro-
priate to magnetized plasmas. There is, of course, no small parameter upon which to
base an asymptotic closure scheme in a collisionless, unmagnetized plasma. How-
ever, such systems occur predominately in accelerator physics contexts, and are not
really plasmas at all, because they exhibit virtually no collective effects. Let us inves-
tigate Chapman-Enskog-like closure schemes in a collisional, quasi-neutral plasma
consisting of equal numbers of electrons and ions. We shall treat the unmagnetized
and magnetized cases separately.

The first step in our closure scheme is to approximate the actual collision operator
for Coulomb interactions by an operator that is strictly bilinear in its arguments. (See
Section 3.10.) Once this has been achieved, the closure problem is formally of the
type that can be solved using the Chapman-Enskog method.

The electron-ion and ion-ion collision times are written

τe =
6
√

2π3/2 ε2
0
√

me T 3/2
e

lnΛc e4 n
, (4.70)

and

τi =
12π3/2 ε2

0
√

mi T 3/2
i

lnΛc e4 n
, (4.71)

respectively. (See Section 3.14.) Here, n = ne = ni is the number density of particles,
and lnΛc is the Coulomb logarithm, whose origin is the slight modification to the
collision operator mentioned previously. (See Section 3.10.)

The basic forms of Equations (4.70) and (4.71) are not hard to understand. From
Equation (4.58), we expect

τ ∼
l
vt
∼

1
nσ vt

, (4.72)

where σ is the typical “cross-section” of the electrons or ions for Coulomb “colli-
sions” (i.e., large angle scattering events). Of course, this cross-section is simply the
square of the distance of closest approach, rc, defined in Equation (1.17). Thus,

τ ∼
1

n r2
c vt
∼
ε2

0
√

m T 3/2

e4 n
. (4.73)

The most significant feature of Equations (4.70) and (4.71) is the strong variation
of the collision times with temperature. As the plasma gets hotter, the distance of
closest approach gets smaller, so that both electrons and ions offer much smaller
cross-sections for Coulomb collisions. The net result is that such collisions become
far less frequent, and the collision times (i.e., the mean times between 90◦ degree



Plasma Fluid Theory � 83

scattering events) get much longer. It follows that as plasmas are heated they become
less collisional very rapidly.

The electron and ion fluid equations in a collisional plasma take the form [see
Equations (4.47)–(4.49)]:

den
dt

+ n∇ · Ve = 0, (4.74)

me n
deVe

dt
+ ∇pe + ∇ · πe + e n (E + Ve × B) = F, (4.75)

3
2

de pe

dt
+

5
2

pe ∇ · Ve + πe : ∇Ve + ∇ · qe = we, (4.76)

and

din
dt

+ n∇ · Vi = 0, (4.77)

mi n
diVi

dt
+ ∇pi + ∇ · πi − e n (E + Vi × B) = −F, (4.78)

3
2

di pi

dt
+

5
2

pi ∇ · Vi + πi : ∇Vi + ∇ · qi = wi, (4.79)

respectively. Here, use has been made of the momentum conservation law, Equa-
tion (4.25). Equations (4.74)–(4.76) and (4.77)–(4.79) are called the Braginskii equa-
tions, because they were first obtained in a celebrated article by S.I. Braginskii (Bra-
ginskii 1965).

4.10 UNMAGNETIZED LIMIT

In the unmagnetized limit, which actually corresponds to

Ωi τi, Ωe τe � 1, (4.80)

the standard two-Laguerre-polynomial Chapman-Enskog closure scheme yields

F =
n e
σ‖

j − 0.71 n∇Te, (4.81)

wi =
3 me

mi

n (Te − Ti)
τe

, (4.82)

we = −wi +
j · F
n e

= −wi +
j2

σ‖
− 0.71

j · ∇Te

e
. (4.83)

Here, j = −n e (Ve −Vi) is the net plasma current density, and the electrical conduc-
tivity, σ‖, is given by

σ‖ = 1.96
n e2 τe

me
. (4.84)

Moreover, use has been made of the conservation law, Equation (4.32).



84 � Plasma Physics: An Introduction (2nd Edition)

Let us examine each of the previous collisional terms, one by one. The first term
on the right-hand side of Equation (4.81) is a friction force (per unit volume) caused
by the relative motion of electrons and ions, and obviously controls the electrical
conductivity of the plasma. The form of this term is fairly easy to understand. The
electrons lose their ordered velocity with respect to the ions, U = Ve − Vi, in an
electron-ion collision time, τe, and consequently lose momentum me U per elec-
tron (which is given to the ions) in this time. This means that a frictional force
(me n/τe) U ∼ n e j/(n e2 τe/me) is exerted on the electrons. An equal and opposite
force is exerted on the ions. Because the Coulomb cross-section diminishes with in-
creasing electron energy (i.e., τe ∼ T 3/2

e ), the conductivity of the fast electrons in
the distribution function is higher than that of the slow electrons (because σ‖ ∼ τe).
Hence, electrical current in plasmas is carried predominately by the fast electrons.
This effect has some important and interesting consequences.

One immediate consequence is the second term on the right-hand side of Equa-
tion (4.81), which is called the thermal force. To understand the origin of a frictional
force (per unit volume) proportional to minus the gradient of the electron tempera-
ture, let us assume that the electron and ion fluids are at rest (i.e., Ve = Vi = 0). It
follows that the number of electrons moving from left to right (along the x-axis, say)
and from right to left per unit time is exactly the same at a given point (coordinate x0,
say) in the plasma. As a result of electron-ion collisions, these fluxes experience fric-
tional forces, F− and F+, respectively, of approximate magnitude me n ve/τe, where ve

is the electron thermal velocity. In a completely homogeneous plasma, these forces
balance exactly, and so there is zero net frictional force. Suppose, however, that the
electrons coming from the right are, on average, hotter than those coming from the
left. It follows that the frictional force F+ acting on the fast electrons coming from
the right is less than the force F− acting on the slow electrons coming from the left,
because τe increases with electron temperature. As a result, there is a net frictional
force acting to the left: that is, in the direction of −∇Te.

Let us estimate the magnitude of the frictional force. At point x0, collisions are
experienced by electrons that have traversed distances of similar magnitude to a
mean-free-path, le ∼ ve τe. Thus, the electrons coming from the right originate from
regions in which the temperature is approximately le ∂Te/∂x greater than the regions
from which the electrons coming from the left originate. Because the friction force
is proportional to T−1

e , the net force F+ − F− is approximately

FT ∼ −
le
Te

∂Te

∂x
me n ve

τe
∼ −

me v
2
e

Te
n
∂Te

∂x
∼ −n

∂Te

∂x
. (4.85)

It must be emphasized that the thermal force is a direct consequence of collisions,
despite the fact that the expression for the thermal force does not contain τe explicitly.

The term wi, specified in Equation (4.82), represents the rate (per unit volume) at
which energy is acquired by the ions due to collisions with the electrons. The most
striking aspect of this term is its smallness (note that it is proportional to an inverse
mass ratio, me/mi). The smallness of wi is a direct consequence of the fact that elec-
trons are considerably lighter than ions. Consider the limit in which the ion mass is
infinite, and the ions are at rest on average: that is, Vi = 0. In this case, collisions of
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electrons with ions take place without any exchange of energy. The electron veloci-
ties are randomized by the collisions, so that the energy associated with their ordered
velocity, U = Ve − Vi, is converted into heat energy in the electron fluid [this is
represented by the second term on the extreme right-hand side of Equation (4.83)].
However, the ion energy remains unchanged. Let us now assume that the ratio mi/me

is large, but finite, and that U = 0. If Te = Ti then the ions and electrons are in ther-
mal equilibrium, so no heat is exchanged between them. However, if Te > Ti then
heat is transferred from the electrons to the ions. As is well known, when a light par-
ticle collides with a heavy particle, the order of magnitude of the transferred energy
is given by the mass ratio m1/m2, where m1 is the mass of the lighter particle. For
example, the mean fractional energy transferred in isotropic scattering is 2 m1/m2.
Thus, we would expect the energy per unit time transferred from the electrons to the
ions to be roughly

wi ∼
n
τe

2 me

mi

3
2

(Te − Ti). (4.86)

In fact, τe is defined so as to make the previous estimate exact.
The term we, specified in Equation (4.83), represents the rate (per unit volume)

at which energy is acquired by the electrons because of collisions with the ions, and
consists of three terms. Not surprisingly, the first term is simply minus the rate at
which energy is acquired by the ions due to collisions with the electrons. The second
term represents the conversion of the ordered motion of the electrons, relative to the
ions, into random motion (i.e., heat) via collisions with the ions. This term is positive
definite, indicating that the randomization of the electron ordered motion gives rise to
irreversible heat generation. Incidentally, this term is usually called the ohmic heating
term. Finally, the third term represents the work done against the thermal force. This
term can be either positive or negative, depending on the direction of the current flow
relative to the electron temperature gradient, which indicates that work done against
the thermal force gives rise to reversible heat generation. There is an analogous effect
in metals called the Thomson effect (Doolittle 1959).

The electron and ion heat fluxes are given by

qe = −κe
‖
∇Te − 0.71

Te

e
j, (4.87)

qi = −κi
‖
∇Ti, (4.88)

respectively. The electron and ion thermal conductivities are written

κe
‖

= 3.2
n τe Te

me
, (4.89)

κi
‖

= 3.9
n τi Ti

mi
, (4.90)

respectively.
It follows, by comparison with Equations (4.63)–(4.68), that the first term on

the right-hand side of Equation (4.87), as well as the expression on the right-hand
side of Equation (4.88), represent straightforward random-walk heat diffusion, with
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frequency ν, and step-length l. Recall, that ν = τ−1 is the collision frequency, and
l = τ vt is the mean-free-path. The electron heat diffusivity is generally much greater
than that of the ions, because κe

‖
/κi
‖
∼
√

mi/me, assuming that Te ∼ Ti.
The second term on the right-hand side of Equation (4.87) describes a convec-

tive heat flux due to the motion of the electrons relative to the ions. To understand
the origin of this flux, we need to recall that electric current in plasmas is carried
predominately by the fast electrons in the distribution function. Suppose that U is
nonzero. In the coordinate system in which Ve is zero, more fast electrons move in
the direction of U, and more slow electrons move in the opposite direction. Although
the electron fluxes are balanced in this frame of reference, the energy fluxes are not
(because a fast electron possesses more energy than a slow electron), and heat flows
in the direction of U: that is, in the opposite direction to the electric current. The net
heat flux density is of approximate magnitude n Te U, because there is no near can-
cellation of the fluxes due to the fast and slow electrons. Like the thermal force, this
effect depends on collisions, despite the fact that the expression for the convective
heat flux does not contain τe explicitly.

Finally, the electron and ion viscosity tensors take the form

πeαβ = −ηe
0

(
∂Vα

∂rβ
+
∂Vβ

∂rα
−

2
3
∇ · V δαβ

)
, (4.91)

πiαβ = −ηi
0

(
∂Vα

∂rβ
+
∂Vβ

∂rα
−

2
3
∇ · V δαβ

)
, (4.92)

respectively. Obviously, Vα refers to a Cartesian component of the electron fluid ve-
locity in Equation (4.91) and the ion fluid velocity in Equation (4.92). Here, the
electron and ion viscosities are given by

ηe
0 = 0.73 n τe Te, (4.93)

ηi
0 = 0.96 n τi Ti, (4.94)

respectively. It follows, by comparison with Equations (4.62)–(4.68), that the previ-
ous expressions correspond to straightforward random-walk diffusion of momentum,
with frequency ν, and step-length l. Again, the electron diffusivity exceeds the ion
diffusivity by the square root of a mass ratio (assuming Te ∼ Ti). However, the ion
viscosity exceeds the electron viscosity by the same factor (recall that η ∼ n mχv):
that is, ηi

0/η
e
0 ∼

√
mi/me. For this reason, the viscosity of a plasma is determined

essentially by the ions. This is not surprising, because viscosity is the diffusion of
momentum, and the ions possess nearly all of the momentum in a plasma by virtue
of their large masses.

4.11 MAGNETIZED LIMIT

Let us now examine the magnetized limit,

Ωi τi, Ωe τe � 1, (4.95)
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in which the electron and ion gyroradii are much smaller than the corresponding
mean-free-paths. In this limit, the two-Laguerre-polynomial Chapman-Enskog clo-
sure scheme yields

F = n e
(

j‖
σ‖

+
j⊥
σ⊥

)
− 0.71 n∇‖Te −

3 n
2 |Ωe| τe

b × ∇⊥Te, (4.96)

wi =
3 me

mi

n (Te − Ti)
τe

, (4.97)

we = −wi +
j · F
n e

. (4.98)

Here, the parallel electrical conductivity, σ‖, is given by Equation (4.84), whereas
the perpendicular electrical conductivity, σ⊥, takes the form

σ⊥ = 0.51σ‖ =
n e2 τe

me
. (4.99)

Note that ∇‖(· · · ) ≡ [b · ∇(· · · )] b denotes a gradient parallel to the magnetic field,
whereas ∇⊥ ≡ ∇ − ∇‖ denotes a gradient perpendicular to the magnetic field. Like-
wise, j‖ ≡ (b · j) b represents the component of the plasma current density flowing
parallel to the magnetic field, whereas j⊥ ≡ j − j‖ represents the perpendicular com-
ponent of the plasma current density.

We expect the presence of a strong magnetic field to give rise to a marked an-
isotropy in plasma properties between directions parallel and perpendicular to B,
because of the completely different motions of the constituent ions and electrons
parallel and perpendicular to the field. Thus, not surprisingly, we find that the elec-
trical conductivity perpendicular to the field is approximately half that parallel to
the field [see Equations (4.96) and (4.99)]. The thermal force is unchanged (relative
to the unmagnetized case) in the parallel direction, but is radically modified in the
perpendicular direction. In order to understand the origin of the last term in Equa-
tion (4.96), let us consider a situation in which there is a strong magnetic field along
the z-axis, and an electron temperature gradient along the x-axis. (See Figure 4.1.)
The electrons gyrate in the x-y plane in circles of radius ρe ∼ ve/|Ωe|. At a given
point, coordinate x0, say, on the x-axis, the electrons that come from the right and
the left have traversed distances of approximate magnitude ρe. Thus, the electrons
from the right originate from regions where the electron temperature is approxi-
mately ρe ∂Te/∂x greater than the regions from which the electrons from the left
originate. Because the friction force is proportional to T−1

e , an unbalanced friction
force arises, directed along the −y-axis. (See Figure 4.1.) This direction corresponds
to the direction of −b × ∇Te. There is no friction force along the x-axis, because
the x-directed fluxes are associated with electrons that originate from regions where
x = x0. By analogy with Equation (4.85), the magnitude of the perpendicular thermal
force is

FT⊥ ∼
ρe

Te

∂Te

∂x
me n ve

τe
∼

n
|Ωe| τe

∂Te

∂x
. (4.100)
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Figure 4.1 Origin of the perpendicular thermal force in a magnetized plasma.

The effect of a strong magnetic field on the perpendicular component of the thermal
force is directly analogous to a well-known phenomenon in metals called the Nernst
effect (Rowe 2006).

In the magnetized limit, the electron and ion heat fluxes become

qe = −κe
‖
∇‖Te − κ

e
⊥ ∇⊥Te − κ

e
× b × ∇⊥Te − 0.71

Te

e
j‖ −

3 Te

2 |Ωe| τe e
b × j⊥, (4.101)

qi = −κi
‖
∇‖Ti − κ

i
⊥ ∇⊥Ti + κi

× b × ∇⊥Ti, (4.102)

respectively. Here, the parallel thermal conductivities are given by Equations (4.89)–
(4.90), and the perpendicular thermal conductivities take the form

κe
⊥ = 4.7

n Te

me Ω2
e τe

, (4.103)

κi
⊥ = 2

n Ti

mi Ω
2
i τi

. (4.104)

Finally, the cross thermal conductivities are written

κe
× =

5 n Te

2 me |Ωe|
, (4.105)

κi
× =

5 n Ti

2 mi Ωi
. (4.106)
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The first two terms on the right-hand sides of Equations (4.101) and (4.102) cor-
respond to diffusive heat transport by the electron and ion fluids, respectively. Ac-
cording to the first terms, the diffusive transport in the direction parallel to the mag-
netic field is exactly the same as that in the unmagnetized case: that is, it corresponds
to collision-induced random-walk diffusion of the ions and electrons, with fre-
quency ν, and step-length l. According to the second terms, the diffusive transport in
the direction perpendicular to the magnetic field is far smaller than that in the parallel
direction. To be more exact, it is smaller by a factor (ρ/l)2, where ρ is the gyroradius,
and l the mean-free-path. In fact, the perpendicular heat transport also corresponds
to collision-induced random-walk diffusion of charged particles, but with frequency
ν, and step-length ρ. Thus, it is the greatly reduced step-length in the perpendicular
direction, relative to the parallel direction, that ultimately gives rise to the strong re-
duction in the perpendicular heat transport. If Te ∼ Ti then the ion perpendicular heat
diffusivity actually exceeds that of the electrons by the square root of a mass ratio:
that is, κi

⊥/κ
e
⊥ ∼
√

mi/me.
The third terms on the right-hand sides of Equations (4.101) and (4.102) corre-

spond to heat fluxes that are perpendicular to both the magnetic field and the direction
of the temperature gradient. In order to understand the origin of these terms, let us
consider the ion flux. Suppose that there is a strong magnetic field along the z-axis,
and an ion temperature gradient along the x-axis. (See Figure 4.2.) The ions gyrate
in the x-y plane in circles of radius ρi ∼ vi/Ωi, where vi is the ion thermal velocity.
At a given point, coordinate x0, say, on the x-axis, the ions that come from the right
and the left have traversed distances of approximate magnitude ρi. The ions from the
right are clearly somewhat hotter than those from the left. If the unidirectional parti-
cle fluxes, of approximate magnitude n vi, are balanced, then the unidirectional heat
fluxes, of approximate magnitude n Ti vi, will have an unbalanced component of rela-
tive magnitude (ρi/Ti) ∂Ti/∂x. As a result, there is a net heat flux in the +y-direction
(i.e., the direction of b × ∇Ti). The magnitude of this flux is

qi
× ∼ n vi ρi

∂Ti

∂x
∼

n Ti

mi |Ωi|

∂Ti

∂x
. (4.107)

There is an analogous expression for the electron flux, except that the electron flux is
in the opposite direction to the ion flux (because the electrons gyrate in the opposite
direction to the ions). Both the ion and electron fluxes transport heat along isotherms,
and do not, therefore, give rise to any change in plasma temperature.

The fourth and fifth terms on the right-hand side of Equation (4.101) correspond
to the convective component of the electron heat flux, driven by motion of the elec-
trons relative to the ions. It is clear from the fourth term that the convective flux
parallel to the magnetic field is exactly the same as in the unmagnetized case [see
Equation (4.87)]. However, according to the fifth term, the convective flux is radically
modified in the perpendicular direction. Probably the easiest method of explaining
the fifth term is via an examination of Equations (4.81), (4.87), (4.96), and (4.101).
There is clearly a very close connection between the electron thermal force and the
convective heat flux. In fact, starting from general principles of the thermodynam-
ics of irreversible processes—the so-called Onsager principles (Reif 1965)—it is
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Figure 4.2 Origin of the convective perpendicular heat flux in a magnetized plasma.

possible to demonstrate that an electron frictional force of the form α (∇Te)β i neces-
sarily gives rise to an electron heat flux of the form α (Te jβ/n e) i, where the subscript
β corresponds to a general Cartesian component, and i is a unit vector. Thus, the fifth
term on the right-hand side of Equation (4.101) follows by Onsager symmetry from
the third term on the right-hand side of Equation (4.96). This is one of many Onsager
symmetries that occur in plasma transport theory.

In order to describe the viscosity tensor in a magnetized plasma, it is helpful to
define the rate-of-strain tensor

Wαβ =
∂Vα

∂rβ
+
∂Vβ

∂rα
−

2
3
∇ · V δαβ. (4.108)

Obviously, there is a separate rate-of-strain tensor for the electron and ion fluids. It
is easily demonstrated that this tensor is zero if the plasma translates, or rotates as
a rigid body, or if it undergoes isotropic compression. Thus, the rate-of-strain tensor
measures the deformation of plasma volume elements.

In a magnetized plasma, the viscosity tensor is best described as the sum of five
component tensors,

π =
∑
n=0,4

πn, (4.109)

where

π0 = −3 η0

(
bb −

1
3

I
) (

bb −
1
3

I
)

: ∇V, (4.110)
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with

π1 = −η1

[
I⊥ ·W · I⊥ +

1
2

I⊥ (b ·W · b)
]
, (4.111)

and
π2 = −4 η1 (I⊥ ·W · bb + bb ·W · I⊥) . (4.112)

plus
π3 =

η3

2
(b ×W · I⊥ − I⊥ ·W × b) , (4.113)

and
π4 = 2 η3 (b ×W · bb − bb ·W × b) . (4.114)

Here, I is the identity tensor, and I⊥ = I − bb. The previous expressions are valid for
both electrons and ions.

The tensor π0 describes what is known as parallel viscosity. This is a viscos-
ity that controls the variation along magnetic field-lines of the velocity component
parallel to field-lines. The parallel viscosity coefficients, ηe

0 and ηi
0, are specified in

Equations (4.93)–(4.94). The parallel viscosity is unchanged from the unmagnetized
case, and is caused by the collision-induced random-walk diffusion of particles, with
frequency ν, and step-length l.

The tensors π1 and π2 describe what is known as perpendicular viscosity. This
is a viscosity that controls the variation perpendicular to magnetic field-lines of the
velocity components perpendicular to field-lines. The perpendicular viscosity coeffi-
cients are given by

ηe
1 = 0.51

n Te

Ω2
e τe

, (4.115)

ηi
1 =

3 n Ti

10Ω2
i τi

. (4.116)

The perpendicular viscosity is far smaller than the parallel viscosity. In fact, it is
smaller by a factor (ρ/l)2. The perpendicular viscosity corresponds to collision-
induced random-walk diffusion of particles, with frequency ν, and step-length ρ.
Thus, it is the greatly reduced step-length in the perpendicular direction, relative to
the parallel direction, that accounts for the smallness of the perpendicular viscosity
compared to the parallel viscosity.

Finally, the tensors π3 and π4 describe what is known as gyroviscosity. This is
not really viscosity at all, because the associated viscous stresses are always perpen-
dicular to the velocity, implying that there is no dissipation (i.e., viscous heating)
associated with this effect. The gyroviscosity coefficients are given by

ηe
3 = −

n Te

2 |Ωe|
, (4.117)

ηi
3 =

n Ti

2Ωi
. (4.118)

The origin of gyroviscosity is very similar to the origin of the cross thermal con-
ductivity terms in Equations (4.101)–(4.102). Both cross thermal conductivity and
gyroviscosity are independent of the collision frequency.
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4.12 NORMALIZATION OF BRAGINSKII EQUATIONS

As we have just seen, the Braginskii equations contain terms that describe a very
wide range of different physical phenomena. For this reason, they are extremely
complicated. Fortunately, however, it is not generally necessary to retain all of the
terms in these equations when investigating a particular problem in plasma physics:
for example, electromagnetic wave propagation through plasmas. In this section, we
shall attempt to construct a systematic normalization scheme for the Braginskii equa-
tions that will, hopefully, enable us to determine which terms to keep, and which to
discard, when investigating a particular aspect of plasma physics.

Let us consider a magnetized plasma. It is convenient to split the friction force F
into a component FU corresponding to resistivity, and a component FT corresponding
to the thermal force. Thus,

F = FU + FT , (4.119)

where

FU = n e
(

j‖
σ‖

+
j⊥
σ⊥

)
, (4.120)

FT = −0.71 n∇‖Te −
3 n

2 |Ωe| τe
b × ∇⊥Te. (4.121)

Likewise, the electron collisional energy gain term we is split into a component −wi

corresponding to the energy lost to the ions (in the ion rest frame), a component wU

corresponding to work done by the friction force FU , and a component wT corre-
sponding to work done by the thermal force FT . Thus,

we = −wi + wU + wT , (4.122)

where

wU =
j · FU

n e
, (4.123)

wT =
j · FT

n e
. (4.124)

Finally, it is helpful to split the electron heat flux qe into a diffusive component qTe

and a convective component qUe. Thus,

qe = qTe + qUe, (4.125)

where

qTe = −κe
‖
∇‖Te − κ

e
⊥ ∇⊥Te − κ

e
× b × ∇⊥Te, (4.126)

qUe = 0.71
Te

e
j‖ −

3 Te

2 |Ωe| τe e
b × j⊥. (4.127)
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Let us, first of all, consider the electron fluid equations, which can be written:

den
dt

+ n∇ · Ve = 0, (4.128)

me n
deVe

dt
+ ∇pe + ∇ · πe + e n (E + Ve × B) = FU + FT , (4.129)

3
2

de pe

dt
+

5
2

pe ∇ · Ve + πe : ∇Ve + ∇ · qTe + ∇ · qUe = −wi + wU + wT . (4.130)

Let n̄, v̄e, l̄e, B̄, and ρ̄e = v̄e/(eB̄/me), be typical values of the particle density, the elec-
tron thermal velocity, the electron mean-free-path, the magnetic field-strength, and
the electron gyroradius, respectively. Suppose that the typical electron flow velocity
is λe v̄e, and the typical variation lengthscale is L. Let

δe =
ρ̄e

L
, (4.131)

ζe =
ρ̄e

l̄e
, (4.132)

µ =

√
me

mi
. (4.133)

All three of these parameters are assumed to be small compared to unity.
We define the following normalized quantities:

n̂ =
n
n̄
, v̂e =

ve

v̄e
, r̂ =

r
L
,

∇̂ = L∇, t̂ =
λe v̄e t

L
, V̂e =

Ve

λe v̄e
,

B̂ =
B
B̄
, Ê =

E
λe v̄e B̄

, Û =
U

(1 + λ2
e) δe v̄e

,

p̂e =
pe

me n̄ v̄2
e
, π̂e =

πe

λe δe ζ−1
e me n̄ v̄2

e
, q̂Te =

qTe

δe ζ−1
e me n̄ v̄3

e
,

q̂Ue =
qUe

(1 + λ2
e) δe me n̄ v̄3

e
, F̂U =

FU

(1 + λ2
e) ζe me n̄ v̄2

e/L
, F̂T =

FT

me n̄ v̄2
e/L

,

ŵi =
wi

δ−1
e ζe µ2 me n̄ v̄3

e/L
, ŵU =

wU

(1 + λ2
e)2 δe ζe me n̄ v̄3

e/L
, ŵT =

wT

(1 + λ2
e) δe me n̄ v̄3

e/L
.

The normalization procedure is designed to make all hatted quantities O(1). The
normalization of the electric field is chosen such that the E × B velocity is of similar
magnitude to the electron fluid velocity. Note that the parallel viscosity makes an
O(1) contribution to π̂e, whereas the gyroviscosity makes an O(ζe) contribution, and
the perpendicular viscosity only makes an O(ζ2

e ) contribution. Likewise, the parallel
thermal conductivity makes an O(1) contribution to q̂Te, whereas the cross conduc-
tivity makes an O(ζe) contribution, and the perpendicular conductivity only makes
an O(ζ2

e ) contribution. Similarly, the parallel components of FT and qUe are O(1),
whereas the perpendicular components are O(ζe).
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The normalized electron fluid equations take the form:

den̂
dt̂

+ n̂ ∇̂ · V̂e = 0, (4.134)

λ2
e δe n̂

deV̂e

dt̂
+ δe ∇̂ p̂e + λe δ

2
e ζ
−1
e ∇̂ · π̂e + λe n̂ (Ê + V̂e × B̂)

= (1 + λ2
e) δe ζe F̂U + δe F̂T , (4.135)

λe
3
2

de p̂e

dt̂
+ λe

5
2

p̂e ∇̂ · V̂e + λ2
e δe ζ

−1
e π̂e : ∇̂ · V̂e

+ δe ζ
−1
e ∇̂ · q̂Te + (1 + λ2

e) δe ∇̂ · q̂Ue = −δ−1
e ζe µ

2 ŵi (4.136)

+ (1 + λ2
e)2 δe ζe ŵU + (1 + λ2

e) δe ŵT .

The only large or small (compared to unity) quantities in these equations are the
parameters λe, δe, ζe, and µ. Here, de/dt̂ ≡ ∂/∂t̂ + V̂e · ∇̂. It is assumed that Te ∼ Ti.

Let us now consider the ion fluid equations, which can be written:

din
dt

+ n∇ · Vi = 0, (4.137)

mi n
diVi

dt
+ ∇pi + ∇ · πi − en (E + Vi × B) = −FU − FT , (4.138)

3
2

di pi

dt
+

5
2

pi ∇ · Vi + πi : ∇Vi + ∇ · qi = wi. (4.139)

It is convenient to adopt a normalization scheme for the ion equations which is simi-
lar to, but independent of, that employed to normalize the electron equations. Let n̄,
v̄i, l̄i, B̄, and ρ̄i = v̄i/(eB̄/mi), be typical values of the particle density, the ion thermal
velocity, the ion mean-free-path, the magnetic field-strength, and the ion gyroradius,
respectively. Suppose that the typical ion flow velocity is λi v̄i, and the typical varia-
tion lengthscale is L. Let

δi =
ρ̄i

L
, (4.140)

ζi =
ρ̄i

l̄i
, (4.141)

µ =

√
me

mi
. (4.142)

All three of these parameters are assumed to be small compared to unity.
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We define the following normalized quantities:

n̂ =
n
n̄
, v̂i =

vi

v̄i
, r̂ =

r
L
,

∇̂ = L∇, t̂ =
λi v̄i t

L
, V̂i =

Vi

λi v̄i
,

B̂ =
B
B̄
, Ê =

E
λi v̄i B̄

, Û =
U

(1 + λ2
i ) δi v̄i

,

p̂i =
pi

mi n̄ v̄2
i

, π̂i =
πi

λi δi ζ
−1
i mi n̄ v̄2

i

, q̂i =
qi

δi ζ
−1
i mi n̄ v̄3

i

,

F̂U =
FU

(1 + λ2
i ) ζi µmi n̄ v̄2

i /L
, F̂T =

FT

mi n̄ v̄2
i /L

, ŵi =
wi

δ−1
i ζi µmi n̄ v̄3

i /L
.

As before, the normalization procedure is designed to make all hatted quantities
O(1). The normalization of the electric field is chosen such that the E×B velocity is of
similar magnitude to the ion fluid velocity. Note that the parallel viscosity makes an
O(1) contribution to π̂i, whereas the gyroviscosity makes an O(ζi) contribution, and
the perpendicular viscosity only makes an O(ζ2

i ) contribution. Likewise, the parallel
thermal conductivity makes an O(1) contribution to q̂i, whereas the cross conduc-
tivity makes an O(ζi) contribution, and the perpendicular conductivity only makes
an O(ζ2

i ) contribution. Similarly, the parallel component of FT is O(1), whereas the
perpendicular component is O(ζi µ).

The normalized ion fluid equations take the form:

din̂
dt̂

+ n̂ ∇̂ · V̂i = 0, (4.143)

λ2
i δi n̂

diV̂i

dt̂
+ δi ∇̂p̂i + λi δ

2
i ζ
−1
i ∇̂ · π̂i

− λi n̂ (Ê + V̂i × B̂) = −(1 + λ2
i ) δi ζi µ F̂U − δi F̂T , (4.144)

λi
3
2

di p̂i

dt̂
+ λi

5
2

p̂i ∇̂ · V̂i + λ2
i δi ζ

−1
i π̂i : ∇̂ · V̂i + δi ζ

−1
i ∇̂ · q̂i = δ−1

i ζi µ ŵi. (4.145)

The only large or small (compared to unity) quantities in these equations are the
parameters λi, δi, ζi, and µ. Here, di/dt̂ ≡ ∂/∂t̂ + V̂i · ∇̂.

Let us adopt the ordering

δe, δi � ζe, ζi, µ � 1, (4.146)

which is appropriate to a collisional, highly magnetized, plasma. In the first stage
of our ordering procedure, we shall treat δe and δi as small parameters, and ζe, ζi,
and µ as O(1). In the second stage, we shall take note of the smallness of ζe, ζi, and
µ. Note that the parameters λe and λi are “free ranging”. In other words, they can
be either large, small, or O(1). In the initial stage of the ordering procedure, the ion
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and electron normalization schemes we have adopted become essentially identical
[because µ ∼ O(1)], and it is convenient to write

λe ∼ λi ∼ λ, (4.147)

δe ∼ δi ∼ δ, (4.148)

Ve ∼ Vi ∼ V, (4.149)

ve ∼ vi ∼ vt, (4.150)

Ωe ∼ Ωi ∼ Ω. (4.151)

There are three fundamental orderings in plasma fluid theory.
The first fundamental ordering is

λ ∼ δ−1. (4.152)

This corresponds to
V � vt. (4.153)

In other words, the fluid velocities are much greater than the respective thermal ve-
locities. We also have

V
L
∼ Ω. (4.154)

Here, V/L is conventionally termed the transit frequency, and is the frequency with
which fluid elements traverse the system. It is clear that the transit frequencies are of
approximately the same magnitudes as the gyrofrequencies in this ordering. Keeping
only the largest terms in Equations (4.134)–(4.136) and (4.143)–(4.145), the Bragin-
skii equations reduce to (in unnormalized form):

den
dt

+ n∇ · Ve = 0, (4.155)

me n
deVe

dt
+ e n (E + Ve × B) = [ζ] FU , (4.156)

and

din
dt

+ n∇ · Vi = 0, (4.157)

mi n
diVi

dt
− e n (E + Vi × B) = −[ζ] FU . (4.158)

The factors in square brackets are just to remind us that the terms they precede are
smaller than the other terms in the equations (by the corresponding factors inside the
brackets).

Equations (4.155)–(4.156) and (4.157)–(4.158) are called the cold-plasma equa-
tions, because they can be obtained from the Braginskii equations by formally taking
the limit Te,Ti → 0. Likewise, the ordering (4.152) is called the cold-plasma ap-
proximation. The cold-plasma approximation applies not only to cold plasmas, but
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also to very fast disturbances that propagate through conventional plasmas. In par-
ticular, the cold-plasma equations provide a good description of the propagation of
electromagnetic waves through plasmas. After all, electromagnetic waves generally
have very high velocities (i.e., V ∼ c), which they impart to plasma fluid elements,
so there is usually no difficulty satisfying the inequality (4.153).

The electron and ion pressures can be neglected in the cold-plasma limit, because
the thermal velocities are much smaller than the fluid velocities. It follows that there
is no need for an electron or ion energy evolution equation. Furthermore, the motion
of the plasma is so fast, in this limit, that relatively slow “transport” effects, such as
viscosity and thermal conductivity, play no role in the cold-plasma fluid equations.
In fact, the only collisional effect that appears in these equations is resistivity.

The second fundamental ordering is

λ ∼ 1, (4.159)

which corresponds to
V ∼ vt. (4.160)

In other words, the fluid velocities are of similar magnitudes to the respective thermal
velocities. Keeping only the largest terms in Equations (4.134)–(4.136) and (4.143)–
(4.145), the Braginskii equations reduce to (in unnormalized form):

den
dt

+ n∇ · Ve = 0, (4.161)

me n
deVe

dt
+ ∇pe + [δ−1] e n (E + Ve × B) = [ζ] FU + FT , (4.162)

3
2

de pe

dt
+

5
2

pe ∇ · Ve = −[δ−1 ζ µ2]wi, (4.163)

and

din
dt

+ n∇ · Vi = 0, (4.164)

mi n
diVi

dt
+ ∇pi − [δ−1] e n (E + Vi × B) = −[ζ] FU − FT , (4.165)

3
2

di pi

dt
+

5
2

pi ∇ · Vi = [δ−1 ζ µ2]wi. (4.166)

Again, the factors in square brackets remind us that the terms they precede are larger,
or smaller, than the other terms in the equations.

Equations (4.161)–(4.163) and (4.164)–(4.165) are called the magnetohydrody-
namical equations, or MHD equations, for short. Likewise, the ordering (4.159) is
called the MHD approximation. The MHD equations are conventionally used to
study macroscopic plasma instabilities possessing relatively fast growth-rates: for
example, “sausage” modes and “kink” modes (Bateman 1978).

The electron and ion pressures cannot be neglected in the MHD limit, because
the fluid velocities are similar in magnitude to the respective thermal velocities. Thus,
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electron and ion energy evolution equations are needed in this limit. However, MHD
motion is sufficiently fast that “transport” effects, such as viscosity and thermal con-
ductivity, are too slow to play a role in the MHD equations. In fact, the only col-
lisional effects that appear in these equations are resistivity, the thermal force, and
electron-ion collisional energy exchange.

The third fundamental ordering is

λ ∼ δ, (4.167)

which corresponds to
V ∼ δ vt ∼ vd, (4.168)

where vd is a typical drift (e.g., a curvature or grad-B drift—see Chapter 2) veloc-
ity. In other words, the fluid velocities are of similar magnitude to the respective
drift velocities. Keeping only the largest terms in Equations (3.113) and (3.116), the
Braginskii equations reduce to (in unnormalized form):

den
dt

+ n∇ · Ve = 0, (4.169)

me n
deVe

dt
+ [δ−2]∇pe + [ζ−1]∇ · πe

+[δ−2] e n (E + Ve × B) = [δ−2 ζ] FU + [δ−2] FT , (4.170)

3
2

de pe

dt
+

5
2

pe ∇ · Ve + [ζ−1]∇ · qTe + ∇ · qUe = −[δ−2 ζ µ2]wi + [ζ]wU + wT ,

(4.171)

and

din
dt

+ n∇ · Vi = 0, (4.172)

mi n
diVi

dt
+ [δ−2]∇pi + [ζ−1]∇ · πi

−[δ−2] e n (E + Vi × B) = −[δ−2 ζ] FU − [δ−2] FT , (4.173)

3
2

di pi

dt
+

5
2

pi ∇ · Vi + [ζ−1]∇ · qi = [δ−2 ζ µ2] Wi. (4.174)

As before, the factors in square brackets remind us that the terms they precede are
larger, or smaller, than the other terms in the equations.

Equations (4.169)–(4.171) and (4.172)–(4.174) are called the drift equations.
Likewise, the ordering (4.167) is called the drift approximation. The drift equations
are conventionally used to study equilibrium evolution, and the slow growing “micro-
instabilities” that are responsible for turbulent transport in tokamaks. It is clear that
virtually all of the original terms in the Braginskii equations must be retained in this
limit.

In the following sections, we investigate the cold-plasma equations, the MHD
equations, and the drift equations, in more detail.
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4.13 COLD-PLASMA EQUATIONS

Previously, we used the smallness of the magnetization parameter, δ, to derive the
cold-plasma equations:

∂n
∂t

+ ∇ · (n Ve) = 0, (4.175)

me n
∂Ve

∂t
+ me n (Ve · ∇)Ve + e n (E + Ve × B) = [ζ] FU , (4.176)

and

∂n
∂t

+ ∇ · (n Vi) = 0, (4.177)

mi n
∂Vi

∂t
+ mi n (Vi · ∇)Vi − e n (E + Vi × B) = −[ζ] FU . (4.178)

Let us now use the smallness of the mass ratio me/mi to further simplify these equa-
tions. In particular, we would like to write the electron and ion fluid velocities in
terms of the center-of-mass velocity,

V =
mi Vi + me Ve

mi + me
, (4.179)

and the plasma current
j = −n e U, (4.180)

where U = Ve − Vi. According to the ordering scheme adopted in the previous
section, U ∼ Ve ∼ Vi in the cold-plasma limit. We shall continue to regard the mean-
free-path parameter ζ as O(1).

It follows from Equations (4.179) and (4.180) that

Vi ' V + O

(
me

mi

)
, (4.181)

and

Ve ' V −
j

ne
+ O

(
me

mi

)
. (4.182)

Equations (4.175), (4.177), (4.181), and (4.182) yield the continuity equation:

dn
dt

+ n∇ · V = 0, (4.183)

where d/dt ≡ ∂/∂t + V · ∇. Here, use has been made of the fact that ∇ · j = 0 in a
quasi-neutral plasma.

Equations (4.176) and (4.178) can be summed to give the equation of motion:

mi n
dV
dt
− j × B ' 0. (4.184)
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Finally, Equations (4.176), (4.181), and (4.182) can be combined to give a mod-
ified Ohm’s law:

E + V × B '
FU

n e
+

j × B
n e

+
me

n e2

dj
dt

+
me

n e2 (j · ∇) V −
me

n2 e3 (j · ∇) j. (4.185)

The first term on the right-hand side of the previous equation corresponds to resis-
tivity, the second corresponds to the Hall effect, the third corresponds to the effect of
electron inertia, and the remaining terms are usually negligible.

4.14 MHD EQUATIONS

The MHD equations take the form:

∂n
∂t

+ ∇ · (n Ve) = 0, (4.186)

me n
∂Ve

∂t
+ me n (Ve · ∇)Ve + ∇pe + [δ−1] e n (E + Ve × B) = [ζ] FU + FT , (4.187)

3
2
∂pe

∂t
+

3
2

(Ve · ∇) pe +
5
2

pe ∇ · Ve = −[δ−1 ζ µ2]wi,

(4.188)

and

∂n
∂t

+ ∇ · (n Vi) = 0, (4.189)

mi n
∂Vi

∂t
+ mi n (Vi · ∇)Vi + ∇pi − [δ−1] e n (E + Vi × B) = −[ζ] FU − FT , (4.190)

3
2
∂pi

∂t
+

3
2

(Vi · ∇) pi +
5
2

pi ∇ · Vi = [δ−1 ζ µ2]wi. (4.191)

These equations can also be simplified by making use of the smallness of the mass
ratio me/mi. Now, according to the ordering adopted in Section 4.12, U ∼ δVe ∼ δVi

in the MHD limit. It follows from Equations (4.181) and (4.182) that

Vi ' V + O

(
me

mi

)
, (4.192)

and

Ve ' V − [δ]
j

n e
+ O

(
me

mi

)
. (4.193)

The main point, here, is that in the MHD limit the velocity difference between the
electron and ion fluids is relatively small.

Equations (4.186) and (4.189) yield the continuity equation:

dn
dt

+ n∇ · V = 0, (4.194)

where d/dt ≡ ∂/∂t + V · ∇.
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Equations (4.187) and (4.190) can be summed to give the equation of motion:

mi n
dV
dt

+ ∇p − j × B ' 0. (4.195)

Here, p = pe + pi is the total pressure. Note that all terms in the previous equation
are the same order in δ.

The O(δ−1) components of Equations (4.187) and (4.190) yield the Ohm’s law:

E + V × B ' 0. (4.196)

This is sometimes called the perfect conductivity equation, because it is identical to
the Ohm’s law in a perfectly conducting liquid.

Equations (4.188) and (4.191) can be summed to give the energy evolution equa-
tion:

3
2

dp
dt

+
5
2

p∇ · V ' 0. (4.197)

Equations (4.194) and (4.197) can be combined to give the more familiar adiabatic
equation of state:

d
dt

( p
n5/3

)
' 0. (4.198)

Finally, the O(δ−1) components of Equations (4.188) and (4.191) yield

wi ' 0, (4.199)

or Te ' Ti [see Equation (4.82)]. Thus, we expect equipartition of the thermal energy
between electrons and ions in the MHD limit.

4.15 DRIFT EQUATIONS

The drift equations take the form:

∂n
∂t

+ ∇ · (n Ve) = 0, (4.200)

me n
∂Ve

∂t
+ me n (Ve · ∇)Ve + [δ−2]∇pe + [ζ−1]∇ · πe (4.201)

+[δ−2] e n (E + Ve × B) = [δ−2 ζ] FU + [δ−2] FT ,

3
2
∂pe

∂t
+

3
2

(Ve · ∇) pe +
5
2

pe ∇ · Ve

+[ζ−1]∇ · qTe + ∇ · qUe = −[δ−2 ζ µ2]wi + [ζ]wU + wT ,
(4.202)

and

∂n
∂t

+ ∇ · (n Vi) = 0, (4.203)
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mi n
∂Vi

∂t
+ mi n (Vi · ∇)Vi + [δ−2]∇pi + [ζ−1]∇ · πi (4.204)

−[δ−2] e n (E + Vi × B) = −[δ−2 ζ] FU − [δ−2] FT ,

3
2
∂pi

∂t
+

3
2

(Vi · ∇) pi +
5
2

pi ∇ · Vi + [ζ−1]∇ · qi = [δ−2 ζ µ2]wi. (4.205)

If we assume that δ ∼ ζ ∼ µ � 1 then the dominant term in the electron energy
conservation equation (4.202) yields

∇ · qTe ' ∇ · (−κe
‖
∇‖Te) ' 0, (4.206)

which implies that
B · ∇Te ' 0. (4.207)

In other words, in the drift approximation, the parallel electron heat conductivity is
usually sufficiently large that it forces the electron temperature to be constant on
magnetic field-lines.

The dominant term in the ion energy conservation equation (4.205) yields

∇ · qTi ' ∇ · (−κi
‖
∇‖Ti) ' 0, (4.208)

which implies that
B · ∇Ti ' 0. (4.209)

In other words, in the drift approximation, the parallel ion heat conductivity is usually
sufficiently large that it forces the ion temperature to be constant on magnetic field-
lines.

The dominant terms in the electron and ion momentum conservation equations,
(4.201) and (4.204), yield

E + Ve × B ' −
∇pe

e n
, (4.210)

E + Vi × B ' +
∇pi

e n
. (4.211)

The sum of the preceding two equations gives

j × B ' ∇p, (4.212)

where p = pe + pi. In other words, in the drift approximation, to lowest order, the
plasma exists in an equilibrium state in which the magnetic force density balances
the total scalar pressure force density. It follows from the previous equation that

B · ∇p ' 0. (4.213)

In other words, in the drift approximation, the total plasma pressure is constant along
magnetic field-lines. Given that p = n (Te +Ti), and making use of Equations (4.207)
and (4.209), we deduce that

B · ∇n ' 0. (4.214)
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In other words, in the drift approximation, the electron number density is constant
along magnetic field-lines. It follows that the electron and ion pressures, pe = n Te

and pi = n Ti, are also constant along magnetic field-lines. Hence, Equation (4.210)
yields

E‖ ' 0. (4.215)

In other words, in the drift approximation, to lowest order, the parallel electric field
is zero.

Equations (4.210) and (4.211) can be inverted to give

V⊥ e ' VE + V∗ e, (4.216)

V⊥ i ' VE + V∗ i. (4.217)

Here, VE ≡ E × B/B2 is the E × B velocity, whereas

V∗ e ≡
∇pe × B

e n B2 , (4.218)

and
V∗ i ≡ −

∇pi × B
e n B2 , (4.219)

are termed the electron diamagnetic velocity and the ion diamagnetic velocity, re-
spectively.

According to Equations (4.216) and (4.217), in the drift approximation, the ve-
locity of the electron fluid perpendicular to the magnetic field is the sum of the E×B
velocity and the electron diamagnetic velocity. A similar statement can be made for
the ion fluid. By contrast, in the MHD approximation the perpendicular velocities
of the two fluids consist of the E × B velocity alone, and are, therefore, identical
to lowest order. The main difference between the two orderings lies in the assumed
magnitude of the electric field. In the MHD limit

E
B
∼ vt, (4.220)

whereas in the drift limit
E
B
∼ δ vt ∼ vd. (4.221)

Thus, the MHD ordering can be regarded as a strong electric field ordering, whereas
the drift ordering corresponds to a weak electric field ordering.

The diamagnetic velocities are so named because the diamagnetic current,

j∗ ≡ −e n (V∗ e − V∗ i) = −
∇p × B

B2 , (4.222)

generally acts to reduce the magnitude of the magnetic field inside the plasma.
The electron diamagnetic velocity can be written

V∗ e =
Te ∇n × b

e n B
+
∇Te × b

e B
. (4.223)
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Figure 4.3 Origin of the diamagnetic velocity in a magnetized plasma.

In order to account for this velocity, let us consider a simplified case in which the
electron temperature is uniform, there is a uniform density gradient running along
the x-direction, and the magnetic field is parallel to the z-axis. (See Figure 4.3.) The
electrons gyrate in the x-y plane in circles of radius ρe ∼ ve/|Ωe|. At a given point,
coordinate x0, say, on the x-axis, the electrons that come from the right and the left
have traversed distances of approximate magnitude ρe. Thus, the electrons from the
right originate from regions where the particle density is approximately ρe ∂n/∂x
greater than the regions from which the electrons from the left originate. It follows
that the y-directed particle flux is unbalanced, with slightly more particles moving
in the −y-direction than in the +y-direction. Thus, there is a net particle flux in the
−y-direction: that is, in the direction of ∇n × b. The magnitude of this flux is

n V∗ e ∼ ρe
∂n
∂x

ve ∼
Te

e B
∂n
∂x
. (4.224)

There is no unbalanced particle flux in the x-direction, because the x-directed fluxes
are associated with electrons that originate from regions where x = x0. We have
now accounted for the first term on the right-hand side of Equation (4.223). We can
account for the second term using similar arguments. The ion diamagnetic velocity is
similar in magnitude to the electron diamagnetic velocity, but is oppositely directed,
because ions gyrate in the opposite direction to electrons.

The most curious aspect of diamagnetic flows is that they represent fluid flows for
which there is no corresponding motion of the particle guiding centers. Nevertheless,
the diamagnetic velocities are real fluid velocities, and the associated diamagnetic
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current is a real current. For instance, the diamagnetic current contributes to force
balance inside the plasma, and also gives rise to ohmic heating.

4.16 CLOSURE IN COLLISIONLESS MAGNETIZED PLASMAS

Up to now, we have only considered fluid closure in collisional magnetized plas-
mas. Unfortunately, the majority of magnetized plasmas encountered in nature—in
particular, fusion, space, and astrophysical plasmas—are collisionless. Let us con-
sider what happens to the cold-plasma equations, the MHD equations, and the drift
equations, in the limit in which the mean-free-path goes to infinity (i.e., ζ → 0).

In the limit ζ → 0, the cold-plasma equations reduce to

dn
dt

+ n∇ · V = 0, (4.225)

mi n
dV
dt
− j × B = 0, (4.226)

E + V × B =
j × B
n e

+
me

n e2

dj
dt

+
me

n e2 (j · ∇) V −
me

n2 e3 (j · ∇) j. (4.227)

Here, we have neglected the resistivity term, because it is O(ζ). Note that none of
the remaining terms in these equations depend explicitly on collisions. Nevertheless,
the absence of collisions poses a serious problem. Whereas the magnetic field effec-
tively confines charged particles in directions perpendicular to magnetic field-lines,
by forcing them to execute tight Larmor orbits, we have now lost all confinement
along field-lines. But, does this matter?

The typical frequency associated with fluid motion is the transit frequency, V/L.
However, according to Equation (4.154), the cold-plasma ordering implies that the
transit frequency is of similar magnitude to a typical gyrofrequency:

V
L
∼ Ω. (4.228)

So, how far is a charged particle likely to drift along a field-line in an inverse transit
frequency? The answer is

∆l‖ ∼
vt L
V
∼
vt

Ω
∼ ρ. (4.229)

In other words, the fluid motion in the cold-plasma limit is so fast that charged parti-
cles only have time to drift a Larmor radius along field-lines on a typical dynamical
timescale. Under these circumstances, it does not really matter that the particles are
not localized along field-lines—the lack of parallel confinement manifests itself too
slowly to affect the plasma dynamics. We conclude, therefore, that the cold-plasma
equations remain valid in the collisionless limit, provided, of course, that the plasma
dynamics are sufficiently rapid for the basic cold-plasma ordering (4.228) to apply. In
fact, the only difference between the collisional and collisionless cold-plasma equa-
tions is the absence of the resistivity term in Ohm’s law in the latter case.
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Let us now consider the MHD limit. In this case, the typical transit frequency is

V
L
∼ δΩ. (4.230)

Thus, charged particles typically drift a distance

∆l‖ ∼
vt L
V
∼

vt

δΩ
∼ L (4.231)

along field-lines in an inverse transit frequency. In other words, the fluid motion in the
MHD limit is sufficiently slow that changed particles have time to drift along field-
lines all the way across the system on a typical dynamical time-scale. Thus, strictly
speaking, the MHD equations are invalidated by the lack of particle confinement
along magnetic field-lines.

In fact, in collisionless plasmas, MHD theory is replaced by a theory known as
kinetic-MHD (Kruskal and Oberman 1958; Rosenbluth and Rostoker 1959). The lat-
ter theory is a combination of a one-dimensional kinetic theory, describing particle
motion along magnetic field-lines, and a two-dimensional fluid theory, describing
perpendicular motion. Unfortunately, the equations of kinetic-MHD are consider-
ably more complicated that the conventional MHD equations. Is there any situation
in which we can salvage the simpler MHD equations in a collisionless plasma? For-
tunately, there is one case in which this is possible.

It turns out that in both varieties of MHD the motion of the plasma parallel to
magnetic field-lines is associated with the dynamics of sound waves, whereas the
motion perpendicular to field-lines is associated with the dynamics of a new type of
wave called an Alfvén wave. As we shall see, in Chapter 5, Alfvén waves involve
the “twanging” motion of magnetic field-lines—a little like the twanging of guitar
strings. It is only the sound wave dynamics that are significantly modified when we
move from a collisional to a collisionless plasma. It follows, therefore, that the MHD
equations remain a reasonable approximation in a collisionless plasma in situations
where the dynamics of sound waves, parallel to the magnetic field, are unimportant
compared to the dynamics of Alfvén waves, perpendicular to the field. This situation
arises whenever the parameter

β =
2 µ0 p

B2 (4.232)

(see Section 1.9) is much less than unity. In fact, it is easily demonstrated that

β ∼

(
VS

VA

)2

, (4.233)

where VS is the sound speed (i.e., thermal velocity), and VA is the speed of an Alfvén
wave. Thus, the inequality

β � 1 (4.234)

ensures that the collisionless parallel plasma dynamics are too slow to affect the
perpendicular dynamics.
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We conclude, therefore, that in a low-β, collisionless, magnetized plasma, the
MHD equations,

dn
dt

+ n∇ · V = 0, (4.235)

mi n
dV
dt

= j × B − ∇p, (4.236)

E + V × B = 0, (4.237)

d
dt

( p
n5/3

)
= 0, (4.238)

describe plasma dynamics that satisfy the basic MHD ordering (4.230) fairly well.
Let us, finally, consider the drift limit. In this case, the typical transit frequency

is
V
L
∼ δ2 Ω. (4.239)

Thus, charged particles typically drift a distance

∆l‖ ∼
vt L
V
∼

L
δ

(4.240)

along field-lines in an inverse transit frequency. In other words, the fluid motion in
the drift limit is so slow that charged particles drifting along field-lines have time
to traverse the system very many times on a typical dynamical time-scale. In fact,
in this limit we have to draw a distinction between those particles that always drift
along field-lines in the same direction, and those particles that are trapped between
magnetic mirror points and, therefore, continually reverse their direction of motion
along field-lines. The former are termed passing particles, whereas the latter are
termed trapped particles.

Now, in the drift limit, the perpendicular drift velocity of charged particles, which
is a combination of E × B drift, grad-B drift, and curvature drift (see Chapter 2), is
approximately

vd ∼ δ vt. (4.241)

Thus, charged particles typically drift a distance

∆l⊥ ∼
vd L
V
∼ L (4.242)

across field-lines in an inverse transit time. In other words, the fluid motion in the
drift limit is so slow that charged particles have time to drift perpendicular to field-
lines all the way across the system on a typical dynamical time-scale. It is, thus,
clear that in the drift limit the absence of collisions implies lack of confinement both
parallel and perpendicular to the magnetic field. This means that the collisional drift
equations, (4.200)–(4.202) and (4.203)–(4.205), are completely invalid in the long
mean-free-path limit.

In fact, in collisionless plasmas, Braginskii-type transport theory—convention-
ally known as classical transport theory—is replaced by a new theory—known as
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neoclassical transport theory—which is a combination of a two-dimensional kinetic
theory, describing particle motion on drift surfaces, and a one-dimensional fluid the-
ory, describing motion perpendicular to the drift surfaces (Bernstein 1974; Hinton
and Hazeltine 1976). Here, a drift surface is a closed surface formed by the locus of
a charged particle’s drift orbit (including drifts parallel and perpendicular to the mag-
netic field). Of course, the orbits only form closed surfaces if the plasma is confined,
but there is little point in examining transport in an unconfined plasma. Unlike clas-
sical transport theory, which is strictly local in nature, neoclassical transport theory
is nonlocal, in the sense that the transport coefficients depend on the average values
of plasma properties taken over drift surfaces.

4.17 LANGMUIR SHEATHS

Virtually all terrestrial plasmas are contained within solid vacuum vessels. But, what
happens to plasma in the immediate vicinity of a vessel wall? Actually, to a first
approximation, when ions and electrons hit a solid surface they recombine and are
lost to the plasma. Hence, we can treat the wall as a perfect sink of particles. Now,
given that the electrons in a plasma generally move much faster than the ions, the
initial electron flux into the wall greatly exceeds the ion flux, assuming that the wall
starts off unbiased with respect to the plasma. Of course, this flux imbalance causes
the wall to charge up negatively, and so generates a potential barrier that repels the
electrons, and thereby reduces the electron flux. Debye shielding confines this barrier
to a thin layer of plasma, whose thickness is a few Debye lengths, coating the inside
surface of the wall. This layer is known as a plasma sheath or a Langmuir sheath.
The height of the potential barrier continues to grow as long as there is a net flux

of negative charge into the wall. This process presumably comes to an end, and a
steady-state is attained, when the potential barrier becomes sufficiently large to make
electron flux equal to the ion flux (Hazeltine and Waelbroeck 2004).

Let us construct a one-dimensional model of an unmagnetized, steady-state,
Langmuir sheath. Suppose that the wall lies at x = 0, and that the plasma occu-
pies the region x > 0. Let us treat the ions and the electrons inside the sheath as
collisionless fluids. The ion and electron equations of motion are thus written

mi ni Vi
dVi

dx
= −Ti

dni

dx
− e ni

dΦ
dx

, (4.243)

me ne Ve
dVe

dx
= −Te

dne

dx
+ e ne

dΦ
dx

, (4.244)

respectively. Here, Φ(x) is the electrostatic potential. Moreover, we have assumed
uniform ion and electron temperatures, Ti and Te, respectively, for the sake of sim-
plicity. We have also neglected any off-diagonal terms in the ion and electron stress-
tensors, because these terms are comparatively small. Note that quasi-neutrality does
not apply inside the sheath, and so the ion and electron number densities, ne and ni,
respectively, are not necessarily equal to one another.

Consider the ion fluid. Let us assume that the mean ion velocity, Vi, is much
greater than the ion thermal velocity, (Ti/mi)1/2. Because, as will become apparent,
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Vi ∼ (Te/mi)1/2, this ordering necessarily implies that Ti � Te: that is, that the
ions are cold with respect to the electrons. It turns out that plasmas in the immediate
vicinity of solid walls often have comparatively cold ions, so our ordering assumption
is fairly reasonable. In the cold ion limit, the pressure term in Equation (4.243) is
negligible, and the equation can be integrated to give

1
2

mi V 2
i (x) + eΦ(x) =

1
2

mi V 2
s + eΦs. (4.245)

Here, Vs and Φs are the mean ion velocity and electrostatic potential, respectively, at
the edge of the sheath (i.e., x→ ∞). Now, ion fluid continuity requires that

ni(x) Vi(x) = ns Vs, (4.246)

where ns is the ion number density at the sheath boundary. Incidentally, because we
expect quasi-neutrality to hold in the plasma outside the sheath, the electron number
density at the edge of the sheath must also be ns (assuming singly-charged ions). The
previous two equations can be combined to give

Vi = Vs

[
1 −

2 e
mi V 2

s
(Φ −Φs)

]1/2

, (4.247)

ni = ns

[
1 −

2 e
mi V 2

s
(Φ −Φs)

]−1/2

(4.248)

Consider the electron fluid. Let us assume that the mean electron velocity, Ve, is
much less than the electron thermal velocity, (me/Te)1/2. In fact, this must be the case,
otherwise, the electron flux to the wall would greatly exceed the ion flux. Now, if the
electron fluid is essentially stationary then the left-hand side of Equation (4.244) is
negligible, and the equation can be integrated to give

ne = ns exp
[
e (Φ −Φs)

Te

]
. (4.249)

Here, we have made use of the fact that ne = ns at the edge of the sheath.
Poisson’s equation is written

ε0
d2Φ

dx2 = e (ne − ni). (4.250)

It follows that

ε0
d2Φ

dx2 = e ns

exp
[
e (Φ −Φs)

Te

]
−

[
1 −

2 e
mi V 2

s
(Φ −Φs)

]−1/2 . (4.251)

Let Φ̂ = −e (Φ −Φs)/Te, y =
√

2 x/λD, and

K =
mi V 2

s

2 Te
, (4.252)
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where λD = (ε0 Te/e2 ns)1/2 is the Debye length. Equation (4.251) transforms to

2
d2Φ̂

dy2 = −e−Φ̂ +

(
1 +

Φ̂

K

)−1/2

, (4.253)

subject to the boundary condition Φ̂→ 0 as y→ ∞. Multiplying through by dΦ̂/dy,
integrating with respect to y, and making use of the boundary condition, we obtain(

dΦ̂
dy

)2

= e−Φ̂ − 1 + 2 K

(1 +
Φ̂

K

)1/2

− 1

 . (4.254)

Unfortunately, the previous equation is highly nonlinear, and can only be solved nu-
merically. However, it is not necessary to attempt this to see that a physical solution
can only exist if the right-hand side of the equation is positive for all y ≥ 0. Consider
the limit y → ∞. It follows from the boundary condition that Φ̂ → 0. Expanding
the right-hand side of Equation (4.254) in powers of Φ̂, we find that the zeroth- and
first-order terms cancel, and we are left with(

dΦ̂
dy

)2

'
Φ̂ 2

2

(
1 −

1
2 K

)
+
Φ̂ 3

3

(
3

8 K2 − 1/2
)

+ O(Φ̂4). (4.255)

Now, the purpose of the sheath is to shield the plasma from the wall potential. It
can be seen, from the previous expression, that the physical solution with maximum
possible shielding corresponds to K = 1/2, because this choice eliminates the first
term on the right-hand side (thereby making Φ̂ as small as possible at large y) leaving
the much smaller, but positive (note that Φ̂ is positive), second term. Hence, we
conclude that

Vs =

(
Te

mi

)1/2

. (4.256)

This result is known as the Bohm sheath criterion. It is a somewhat surprising result,
because it indicates that ions at the edge of the sheath are already moving toward
the wall at a considerable velocity. Of course, the ions are further accelerated as they
pass through the sheath. Because the ions are presumably at rest in the interior of the
plasma, it is clear that there must exist a region sandwiched between the sheath and
the main plasma in which the ions are accelerated from rest to the Bohm velocity,
Vs = (Te/mi)1/2. This region is called the pre-sheath, and is both quasi-neutral and
much wider than the sheath (the actual width depends on the nature of the ion source).

The ion current density at the wall is

ji = −e ni(0) Vi(0) = −e ns Vs = −e ns

(
Te

mi

)1/2

. (4.257)

This current density is negative because the ions are moving in the negative x-
direction. What about the electron current density? Well, the number density of elec-
trons at the wall is ne(0) = ns exp[ e (Φw − Φs)/Te)], where Φw = Φ(0) is the wall
potential. Let us assume that the electrons have a Maxwellian velocity distribution
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peaked at zero velocity (because the electron fluid velocity is much less than the
electron thermal velocity). It follows that half of the electrons at x = 0 are moving
in the negative-x direction, and half in the positive-x direction. Of course, the former
electrons hit the wall, and thereby constitute an electron current to the wall. This cur-
rent is je = (1/4) e ne(0) V̄e, where the 1/4 comes from averaging over solid angle,
and V̄e = (8 Te/πme)1/2 is the mean electron speed corresponding to a Maxwellian
velocity distribution (Reif 1965). Thus, the electron current density at the wall is

je = e ns

(
Te

2πme

)1/2

exp
[
e (Φw −Φs)

Te

]
. (4.258)

In order to replace the electrons lost to the wall, the electrons must have a mean
velocity

Ve s =
je

e ns
=

(
Te

2πme

)1/2

exp
[
e (Φw −Φs)

Te

]
(4.259)

at the edge of the sheath. However, we previously assumed that any electron fluid
velocity was much less than the electron thermal velocity, (Te/me)1/2. As is clear
from the previous equation, this is only possible provided that

exp
[
e (Φw −Φs)

Te

]
� 1 : (4.260)

that is, provided that the wall potential is sufficiently negative to strongly reduce the
electron number density at the wall. The net current density at the wall is

j = e ns

(
Te

mi

)1/2 [ mi

2πme

]1/2

exp
[
e (Φw −Φs)

Te

]
− 1

 . (4.261)

Of course, we require j = 0 in a steady-state sheath, in order to prevent wall charging,
and so we obtain

e (Φw −Φs) = −Te ln
(

mi

2πme

)1/2

. (4.262)

We conclude that, in a steady-state sheath, the wall is biased negatively with respect
to the sheath edge by an amount that is proportional to the electron temperature.

For a hydrogen plasma, ln(mi/2πme)1/2 ' 2.8. Thus, hydrogen ions enter the
sheath with an initial energy (1/2) mi V 2

s = 0.5 Te eV, fall through the sheath poten-
tial, and so impact the wall with energy 3.3 Te eV.

Combining Equations (4.247)–(4.249), (4.254), (4.262), and making use of the
constraint K = 1/2, we arrive at the following set of equations that characterize the
structure of a Langmuir sheath:

dΦ̂
dy

= −
[
e−Φ̂ + (1 + 2 Φ̂)1/2 − 2

]1/2
, (4.263)

Φ̂(0) = ln
(

mi

2πme

)1/2

, (4.264)
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Figure 4.4 Langmuir sheath in a hydrogen plasma.

Vi

Vs
= (1 + 2 Φ̂)1/2, (4.265)

ni

ns
= (1 + 2 Φ̂)−1/2, (4.266)

ne

ns
= e−Φ̂. (4.267)

Equation (4.263) can be solved numerically, subject to the boundary condition
(4.264), to give the results summarized in Figure 4.4. The figure illustrates how the
deviation from quasi-neutrality within the sheath generates an electric potential that
greatly reduces the electron number density at the wall, and also accelerates the ions
as they pass through the sheath (toward the wall).

4.18 LANGMUIR PROBES

A Langmuir probe is a device used to determine the electron temperature and electron
number density of a plasma. It works by inserting an electrode that is biased with
respect to the vacuum vessel into the plasma. Provided that the bias voltage is not too
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Figure 4.5 Current-voltage curve of a Langmuir probe.

positive, we would expect the probe current to vary as

I = A e ns

(
Te

mi

)1/2 ( mi

2πme

)1/2

exp
(

e V
Te

)
− 1

 , (4.268)

where A is the surface area of the probe, and V its bias with respect to the vacuum ves-
sel. [See Equation (4.261).] This current-voltage relation is illustrated in Figure 4.5
For strongly negative biases, the probe current saturates in the ion (negative) direc-
tion. The characteristic current that flows in this situation is called the ion saturation
current, and is of magnitude

Is = A e ns

(
Te

mi

)1/2

. (4.269)

For less negative biases, the current-voltage relation of the probe has the general form

ln
(

I
Is

+ 1
)

= C +
e V
Te

, (4.270)

where C is a constant. Thus, a plot of ln(I/Is + 1) versus V gives a straight-line from
whose slope the electron temperature can be deduced. Note, however, that if the bias
voltage becomes too positive then electrons cease to be effectively repelled from
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the probe surface, and the current-voltage relation (4.268) breaks down. Given the
electron temperature, a measurement of the ion saturation current allows the electron
number density at the sheath edge, ns, to be calculated from Equation (4.269). Now,
in order to accelerate ions to the Bohm velocity, the potential drop across the pre-
sheath needs to be e (Φp − Φs) = Te/2, where Φp is the electric potential in the
interior of the plasma. It follows from Equation (4.249) that the relationship between
the electron number density at the sheath boundary, ns, and the number density in the
interior of the plasma, np, is

ns = np e−0.5 ' 0.61 np. (4.271)

Thus, np can also be determined from the probe.

4.19 EXERCISES

1. Verify Equations (4.17) and (4.18).

2. Verify Equation (4.30).

3. Derive Equations (4.36)–(4.38) from Equation (4.35).

4. Derive Equations (4.41)–(4.43) from Equations (4.36)–(4.38).

5. Derive Equation (4.53) from Equation (4.49).

6. Consider the Maxwellian distribution

f (v) =
n

π3/2 v3
t

exp
(
−
v2

v2
t

)
.

Let

In =

∫
f
n

(
v

vt

)n

d3v.

Demonstrate that I−2 = 2, I0 = 1, I2 = 3/2, and I4 = 15/4.

7. Consider a neutral gas in a force-free steady-state equilibrium. The particle
distribution function f satisfies the simplified kinetic equation

v · ∇ f = C( f ).

We can crudely approximate the collision operator as

C = −ν ( f − f0)

where ν is the effective collision frequency, and

f0 =
n

π3/2 v3
t

exp
[
−

(v − V)2

v2
t

]
.

Here, vt =
√

2 T/m. Suppose that the mean-free-path l = vt/ν is much less
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than the typical variation lengthscale of equilibrium quantities (such as n, T ,
and V). Demonstrate that it is a good approximation to write

f = f0 − ν−1 v · ∇ f0.

(a) Suppose that n and T are uniform, but that V = Vy(x) ey. Demonstrate
that the only nonzero components of the viscosity tensor are

πxy = πyx = −η
dVy

dx
,

where
η =

1
2

m n ν l2.

(b) Suppose that n is uniform, and V = 0, but that T = T (x). Demonstrate
that the only nonzero component of the heat flux is

qx = −κ
dT
dx
,

where
κ =

5
2

n ν l2.

(c) Suppose that V = 0, and n = n(x) and T = T (x), but that p = n T is
constant. Demonstrate that the only nonzero component of the heat flux
is

qx = −κ
dT
dx
,

where
κ =

5
4

n ν l2.

8. Consider a spatially uniform, unmagnetized plasma in which both species have
zero mean flow velocity. Let ne and Te be the electron number density and
temperature, respectively. Let E be the ambient electric field. The electron dis-
tribution function fe satisfies the simplified kinetic equation

−
e

me
E · ∇v fe = Ce.

We can crudely approximate the electron collision operator as

Ce = −νe ( fe − f0)

where νe is the effective electron-ion collision frequency, and

f0 =
ne

π3/2 v3
t e

exp
(
−
v2

v2
t e

)
.
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Here, vt e =
√

2 Te/me. Suppose that E � me νe vt e/e. Demonstrate that it is a
good approximation to write

fe = f0 +
e

me νe
E · ∇v f0.

Hence, show that
j = σE,

where

σ =
e2 ne

me νe
.



C H A P T E R 5

Waves in Cold Plasmas

5.1 INTRODUCTION

The cold-plasma equations describe waves (and other perturbations) that propagate
through a plasma much faster than a typical thermal velocity. (See Section 4.12.)
The collective motions described by the cold-plasma model are closely related to
the individual particle motions discussed in Chapter 2. In fact, in the cold-plasma
model, all particles (of a given species) at a given position effectively move with the
same velocity. It follows that the fluid velocity is identical to the particle velocity,
and is, therefore, governed by the same equations. However, the cold-plasma model
goes beyond the single-particle description because it determines the electromagnetic
fields self-consistently in terms of the charge and current densities generated by the
particle motions. In this chapter, we shall use the cold-plasma equations to investigate
the properties of small amplitude plasma waves.

What role, if any, does the geometry of the plasma equilibrium play in determin-
ing the properties of plasma waves? Clearly, geometry plays a key role for modes
whose wavelengths are comparable to the dimensions of the plasma. However, it is
plausible that waves whose wavelengths are much smaller than the plasma dimen-
sions have properties that are, in a local sense, independent of the geometry. In other
words, the local properties of small wavelength plasma oscillations are universal in
nature. To investigate these properties, we can, to a first approximation, represent the
plasma as a homogeneous equilibrium (corresponding to the limit k L → ∞, where
k is the magnitude of the wavevector, and L is the characteristic equilibrium length-
scale).

5.2 PLANE WAVES IN HOMOGENEOUS PLASMAS

The propagation of small amplitude plasma waves is described by linearized equa-
tions that are obtained by expanding the plasma equations of motion in powers of the
wave amplitude, and then neglecting terms of order higher than unity.

Consider a homogeneous, magnetized, quasi-neutral plasma, consisting of equal
numbers of electrons and ions, in which the mean velocities of both plasma species
are zero. It follows that E0 = 0 and j0 = ∇×B0/µ0 = 0, where the subscript 0 denotes
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an equilibrium quantity. In a homogeneous medium, the general solution of a system
of linear equations can be constructed as a superposition of plane wave solutions of
the form (Fitzpatrick 2013)

E(r, t) = Ek exp[ i (k · r − ω t)], (5.1)

with analogous expressions for B(r, t) and V(r, t). Here, E, B, and V are the perturbed
electric field, magnetic field, and plasma center-of-mass velocity, respectively. The
surfaces of constant phase,

k · r − ω t = constant, (5.2)

are planes perpendicular to k, traveling at the velocity

vph =
ω

k
k̂, (5.3)

where k ≡ |k|, and k̂ is a unit vector pointing in the direction of k. Here, vph is termed
the phase-velocity of the wave (Fitzpatrick 2013). Henceforth, for ease of notation,
we shall omit the subscript k from field variables.

Substitution of the plane-wave solution (5.1) into Maxwell’s equations yields

k × B = −i µ0 j −
ω

c2 E, (5.4)

k × E = ωB, (5.5)

where j(r, t) is the perturbed current density. In linear theory, the current is related to
the electric field via

j = σ · E, (5.6)

where the electrical conductivity tensor, σ, is a function of both k and ω. In the
presence of a nonzero equilibrium magnetic field, this tensor is anisotropic in nature.

Substitution of Equation (5.6) into Equation (5.4) yields

k × B = −
ω

c2 K · E, (5.7)

where
K = I +

iσ
ε0 ω

(5.8)

is termed the dielectric permittivity tensor. Here, I is the identity tensor. Eliminating
the magnetic field between Equations (5.5) and (5.7), we obtain

M · E = 0, (5.9)

where

M =

( c
ω

)2
kk −

(
c k
ω

)2

I + K. (5.10)
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The solubility condition for Equation (5.9),

M(ω,k) ≡ det(M) = 0, (5.11)

is called the dispersion relation, and relates the wave angular frequency, ω, to the
wavevector, k. Also, as the name “dispersion relation” suggests, this relation al-
lows us to determine the rate at which the different Fourier components of a wave
pulse disperse due to the variation of their phase-velocity with frequency (Fitzpatrick
2013).

5.3 COLD-PLASMA DIELECTRIC PERMITTIVITY

In a collisionless plasma, the linearized cold-plasma equations are written [see Equa-
tions (4.225)–(4.227)],

mi ne
∂V
∂t

= j × B0, (5.12)

E = −V × B0 +
j × B0

ne e
+

me

ne e2

∂j
∂t
, (5.13)

where ne is the equilibrium electron number density. Substitution of plane-wave so-
lutions of the type (5.1) into the previous equations yields

−iωmi ne V = j × B0, (5.14)

E = −V × B0 +
j × B0

ne e
− i

ωme

ne e2 j. (5.15)

Let

Πe =

√
ne e2

ε0 me
, (5.16)

Πi =

√
ne e2

ε0 mi
, (5.17)

Ωe = −
e B0

me
, (5.18)

Ωi =
e B0

mi
, (5.19)

be the electron plasma frequency, the ion plasma frequency, the electron cyclotron
frequency, and the ion cyclotron frequency, respectively. Eliminating the fluid veloc-
ity, V, between Equations (5.14) and (5.15), and making use of the previous defini-
tions, we obtain

iω ε0 E =
ω2 j − iωΩe j × b + Ωe Ωi b × (j × b)

Π2
e

, (5.20)

where b = B0/B0.
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The parallel component of the previous equation is readily solved to give

j‖ = iω ε0
Π2

e

ω2 E‖, (5.21)

where j‖ ≡ j ·b, et cetera. In solving for j⊥ ≡ j− j‖ b, it is helpful to define the vectors

e+ =
e1 + i e2
√

2
, (5.22)

e− =
e1 − i e2
√

2
. (5.23)

Here, (e1, e2,b) are a set of mutually orthogonal, right-handed unit vectors. It is easily
demonstrated that

e± × b = ±i e±, (5.24)

b × (e± × b) = e±. (5.25)

It follows that

j± = iω ε0

(
Π2

e

ω2 ± ωΩe + Ωe Ωi

)
E±, (5.26)

where j± = j · e±, et cetera.
The conductivity tensor is diagonal in the “circular” basis (e+, e−,b). In fact, its

elements are the coefficients of E± and E‖ in Equations (5.26) and (5.21), respec-
tively. Thus, the dielectric permittivity tensor, defined in Equation (5.8), takes the
form

Kcirc =

 R, 0, 0
0, L, 0
0, 0, P

 , (5.27)

where

R ' 1 −
Π2

e

ω2 + ωΩe + Ωe Ωi
, (5.28)

L ' 1 −
Π2

e

ω2 − ωΩe + Ωe Ωi
, (5.29)

P ' 1 −
Π2

e

ω2 . (5.30)

Here, R and L represent the permittivities for right- and left-handed circularly polar-
ized waves, respectively. The permittivity parallel to the magnetic field, P, is identical
to that of an unmagnetized plasma.

The previous expressions are only approximate because the small mass-ratio or-
dering me/mi � 1 has already been incorporated into the cold-plasma equations. The
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exact expressions, which are most easily obtained by solving the individual charged
particle equations of motion, and then summing to obtain the fluid response, are

R = 1 −
Π2

e

ω2

(
ω

ω + Ωe

)
−
Π2

i

ω2

(
ω

ω + Ωi

)
, (5.31)

L = 1 −
Π2

e

ω2

(
ω

ω − Ωe

)
−
Π2

i

ω2

(
ω

ω − Ωi

)
, (5.32)

P = 1 −
Π2

e

ω2 −
Π2

i

ω2 . (5.33)

Equations (5.28)–(5.30) and (5.31)–(5.33) are equivalent in the limit me/mi → 0.
Furthermore, Equations (5.31)–(5.33) generalize in a fairly obvious manner to plas-
mas consisting of more than two particle species.

In order to obtain the standard expression for dielectric permittivity tensor, it
is necessary to transform to the Cartesian basis (e1, e2,b). Let b ≡ e3, for ease of
notation. It follows that the components of an arbitrary vector a in the Cartesian
basis are related to the components in the “circular” basis via a1

a2
a3

 = U

 a+

a−
a3

 , (5.34)

where the unitary transformation matrix U is written

U =
1
√

2


1, 1, 0
i, −i, 0
0, 0,

√
2

 . (5.35)

The dielectric permittivity in the Cartesian basis is then

K = U Kcirc U†. (5.36)

We obtain

K =

 S , −i D, 0
i D, S , 0
0, 0, P

 , (5.37)

where
S =

R + L
2

, (5.38)

and
D =

R − L
2

, (5.39)

represent the sum and difference of the right- and left-handed dielectric permittivities,
respectively.
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5.4 COLD-PLASMA DISPERSION RELATION

It is convenient to define a vector

n =
c
ω

k (5.40)

that points in the same direction as the wavevector, k, and whose magnitude, n, is
the refractive index (i.e., the ratio of the velocity of light in vacuum to the phase-
velocity). Equation (5.9) can be rewritten

M · E = (n · E) n − n2 E + K · E = 0. (5.41)

Without loss of generality, we can assume that the equilibrium magnetic field is
directed along the z-axis, and that the wavevector, k, lies in the x-z plane. Let θ be the
angle subtended between k and B0. The eigenmode equation (5.41) can be written S − n2 cos2 θ, −i D, n2 cos θ sin θ

i D, S − n2, 0
n2 cos θ sin θ, 0, P − n2 sin2 θ


 Ex

Ey

Ez

 = 0. (5.42)

The condition for a nontrivial solution is that the determinant of the square matrix be
zero. With the help of the identity

S 2 − D2 ≡ R L, (5.43)

we find that (Hazeltine and Waelbroeck 2004)

M(ω,k) ≡ A n4 − B n2 + C = 0, (5.44)

where

A = S sin2 θ + P cos2 θ, (5.45)

B = R L sin2 θ + P S (1 + cos2 θ), (5.46)

C = P R L. (5.47)

The dispersion relation (5.44) is evidently a quadratic in n2, with two roots. The
solution can be written

n2 =
B ± F

2 A
, (5.48)

where
F2 = (B2 − 4 A C) = (R L − P S )2 sin4 θ + 4 P2 D2 cos2 θ. (5.49)

Note that F2 ≥ 0. It follows that n2 is always real, which implies that n is either
purely real or purely imaginary. In other words, the cold-plasma dispersion relation
describes waves that either propagate without evanescense or decay without spatial
oscillation. The two roots of opposite sign for n, corresponding to a particular root
for n2, simply describe waves of the same type propagating, or decaying, in opposite
directions.
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The dispersion relation (5.44) can also be written

tan2 θ = −
P (n2 − R) (n2 − L)

(S n2 − R L) (n2 − P)
. (5.50)

For the special case of wave propagation parallel to the magnetic field (i.e., θ = 0),
the previous expression reduces to

P = 0, (5.51)

n2 = R, (5.52)

n2 = L. (5.53)

Likewise, for the special case of propagation perpendicular to the field (i.e., θ = π/2),
Equation (5.50) yields

n2 =
R L
S
, (5.54)

n2 = P. (5.55)

5.5 WAVE POLARIZATION

A pure right-handed circularly polarized wave propagating along the z-axis takes the
form

Ex = A cos(k z − ω t), (5.56)

Ey = −A sin(k z − ω t). (5.57)

In terms of complex amplitudes, this becomes

i Ex

Ey
= 1. (5.58)

Similarly, a left-handed circularly polarized wave is characterized by

i Ex

Ey
= −1. (5.59)

The polarization of the transverse electric field is obtained from the middle line
of Equation (5.42):

i Ex

Ey
=

n2 − S
D

=
2 n2 − (R + L)

R − L
. (5.60)

For the case of parallel propagation, with n2 = R, the previous formula yields
i Ex/Ey = 1. Similarly, for the case of parallel propagation, with n2 = L, we
obtain i Ex/Ey = −1. Thus, it is clear that the roots n2 = R and n2 = L in Equa-
tions (5.51)–(5.53) correspond to right- and left-handed circularly polarized waves,
respectively.
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5.6 CUTOFF AND RESONANCE

For certain values of ne, B0, and θ, the wave refractive index, n, is zero. For other val-
ues, the refractive index is infinite. In both cases (assuming that n is a slowly varying
function of position), a transition is made from a region in which the wave in ques-
tion propagates to a region in which the wave decays or vice versa. It is demonstrated
in Section 6.3 that wave reflection occurs at those points where n is zero, and in Sec-
tion 6.4 that wave absorption occurs at those points where n is infinite. The former
points are called wave cutoffs, whereas the latter are termed wave resonances.

According to Equations (5.44) and (5.45)–(5.47), cutoff occurs when

P = 0, (5.61)

or
R = 0, (5.62)

or
L = 0. (5.63)

The cutoff points are independent of the direction of propagation of the wave relative
to the magnetic field.

According to Equation (5.50), resonance takes place when

tan2 θ = −
P
S
. (5.64)

Evidently, resonance points do depend on the direction of propagation of the wave
relative to the magnetic field. For the case of parallel propagation, resonance occurs
whenever S → ∞. In other words, when

R→ ∞, (5.65)

or
L→ ∞. (5.66)

For the case of perpendicular propagation, resonance occurs when

S = 0. (5.67)

5.7 WAVES IN UNMAGNETIZED PLASMAS

Let us now investigate the cold-plasma dispersion relation in detail. It is instructive
to first consider the limit in which the equilibrium magnetic field is zero. In the
absence of a magnetic field, there is no preferred direction, so we can, without loss
of generality, assume that k is directed along the z-axis (i.e., θ = 0). In the zero
magnetic field limit (i.e., Ωe, Ωi → 0), the eigenmode equation (5.42) reduces to P − n2, 0, 0

0, P − n2, 0
0, 0, P


 Ex

Ey

Ez

 = 0, (5.68)
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where

P ' 1 −
Π2

e

ω2 . (5.69)

Here, we have neglected Πi with respect to Πe.
It is clear from Equation (5.68) that there are two types of waves. The first pos-

sesses the eigenvector (0, 0, Ez), and has the dispersion relation

1 −
Π2

e

ω2 = 0. (5.70)

The second possesses the eigenvector (Ex, Ey, 0), and has the dispersion relation

1 −
Π2

e

ω2 −
k2 c2

ω2 = 0. (5.71)

Here, Ex, Ey, and Ez are arbitrary nonzero quantities.
The former wave has k parallel to E, and is, thus, a longitudinal (with respect to

the electric field) wave. This wave is known as the plasma wave, and possesses the
fixed frequency ω = Πe. Now, if E is parallel to k then it follows from Equation (5.5)
that B = 0. In other words, the plasma wave is purely electrostatic in nature. In fact,
the plasma wave is an electrostatic oscillation of the type discussed in Section 1.4.
Because ω is independent of k, the so-called group-velocity (Fitzpatrick 2013),

vg =
∂ω

∂k
, (5.72)

associated with a plasma wave, is zero. As is demonstrated in Section 6.7, the group-
velocity is the propagation velocity of localized wave packets. It is clear that the
plasma wave is not a propagating wave, but instead has the property than an oscil-
lation set up in one region of the plasma remains localized in that region. It should
be noted, however, that in a “warm” plasma (i.e., a plasma with a finite thermal ve-
locity) the plasma wave acquires a nonzero, albeit very small, group velocity. (See
Section 7.2.)

The latter wave is a transverse wave, with k perpendicular to E. There are two
independent linear polarizations of this wave, which propagate at identical veloci-
ties, just like a vacuum electromagnetic wave. The dispersion relation (5.71) can be
rearranged to give

ω2 = Π2
e + k2c2, (5.73)

showing that this wave is just the conventional electromagnetic wave, whose vacuum
dispersion relation is ω2 = k2c2, modified by the presence of the plasma. An impor-
tant conclusion, which follows immediately from the previous expression, is that this
wave can only propagate if ω ≥ Πe. Because Πe is proportional to the square root
of the electron number density, it follows that electromagnetic radiation of a given
frequency can only propagate through an unmagnetized plasma when the electron
number density falls below some critical value.
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5.8 LOW-FREQUENCY WAVE PROPAGATION

Consider wave propagation through a magnetized plasma at frequencies far below the
ion cyclotron or plasma frequencies, which are, in turn, well below the corresponding
electron frequencies. In the low-frequency limit (i.e., ω � Ωi, Πi), we have [see
Equations (5.28)–(5.30)]

S ' 1 +
Π2

i

Ω2
i

, (5.74)

D ' 0, (5.75)

P ' −
Π2

e

ω2 . (5.76)

Here, use has been made of Π2
e /(Ωe Ωi) = −Π2

i /Ω
2
i . Thus, the eigenmode equation

(5.42) reduces to 1 + Π2
i /Ω

2
i − n2 cos2 θ, 0, n2 cos θ sin θ
0, 1 + Π2

i /Ω
2
i − n2, 0

n2 cos θ sin θ, 0, −Π2
e /ω

2 − n2 sin2 θ


 Ex

Ey

Ez

 = 0.

(5.77)
The solubility condition for Equation (5.77) yields the dispersion relation∣∣∣∣∣∣∣∣
1 + Π2

i /Ω
2
i − n2 cos2 θ, 0, n2 cos θ sin θ
0, 1 + Π2

i /Ω
2
i − n2, 0

n2 cos θ sin θ, 0, −Π2
e /ω

2 − n2 sin2 θ

∣∣∣∣∣∣∣∣ = 0. (5.78)

Now, in the low-frequency ordering, Π2
e /ω

2 � Π2
i /Ω

2
i . Thus, we can see that the

bottom right-hand element of the previous determinant is far larger than any of the
other elements. Hence, to a good approximation, the roots of the dispersion relation
are obtained by equating the term multiplying this large factor to zero (Cairns 1985).
In this manner, we obtain two roots:

n2 cos2 θ = 1 +
Π2

i

Ω2
i

, (5.79)

and

n2 = 1 +
Π2

i

Ω2
i

. (5.80)

It is fairly easy to show, from the definitions of the plasma and cyclotron frequen-
cies [see Equations (5.16)–(5.19)], that

Π2
i

Ω2
i

=
c2

B2
0/(µ0 ρ)

=
c2

V2
A

. (5.81)

Here, ρ ' ne mi is the plasma mass density, and

VA =

√
B2

0

µ0 ρ
(5.82)



Waves in Cold Plasmas � 127

is known as the Alfvén velocity. Thus, the dispersion relations (5.79) and (5.80) can
be written

ω =
k VA cos θ√

1 + V2
A/c

2
' k VA cos θ ≡ k‖ VA, (5.83)

and
ω =

k VA√
1 + V2

A/c
2
' k VA, (5.84)

respectively. Here, we have made use of the fact that VA � c in a conventional
plasma.

The dispersion relation (5.83) corresponds to the slow or shear-Alfvén wave,
whereas the dispersion relation (5.84) corresponds to the fast or compressional-
Alfvén wave. The fast/slow terminology simply refers to the relative magnitudes of
the phase-velocities of the two waves. The shear/compressional terminology refers to
the velocity fields associated with the waves. In fact, it is clear from Equation (5.77)
that Ez = 0 for both waves, whereas Ey = 0 for the shear wave, and Ex = 0 for the
compressional wave. Both waves are, in fact, MHD modes that satisfy the linearized
MHD Ohm’s law [see Equation (4.196)]

E + V × B0 = 0. (5.85)

Thus, for the shear wave

Vy = −
Ex

B0
, (5.86)

and Vx = Vz = 0, whereas for the compressional wave

Vx =
Ey

B0
, (5.87)

and Vy = Vz = 0. Now, ∇ · V = i k · V = i k Vx sin θ. Thus, the shear-Alfvén wave
is a torsional wave, with zero divergence of the plasma flow, whereas the compres-
sional wave involves a nonzero flow divergence. In fact, the former wave bends mag-
netic field-lines without compressing them, whereas the latter compresses magnetic
field-lines without bending them (Hazeltine and Waelbroeck 2004). It is important to
realize that the physical entity that resists compression in the compressional wave is
the magnetic field, not the plasma, because there is negligible plasma pressure in the
cold-plasma approximation.

It should be noted that the thermal velocity is not necessarily negligible compared
to the Alfvén velocity in a conventional plasma. Thus, we would expect the dis-
persion relations (5.83) and (5.84), for the shear- and compressional-Alfvén waves,
respectively, to undergo considerable modification in a “warm” plasma. (See Sec-
tion 8.4.)
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5.9 PARALLEL WAVE PROPAGATION

Consider wave propagation, at arbitrary frequencies, parallel to the equilibrium mag-
netic field. When θ = 0, the eigenmode equation (5.42) simplifies to S − n2, −i D, 0

i D, S − n2, 0
0, 0, P


 Ex

Ey

Ez

 = 0. (5.88)

One obvious way of solving this equation is to have

P ' 1 −
Π2

e

ω2 = 0, (5.89)

with the eigenvector (0, 0, Ez). This is just the electrostatic plasma wave that we
found previously in an unmagnetized plasma. This mode is longitudinal in nature,
and, therefore, causes particles to oscillate parallel to B0. It follows that the particles
experience zero Lorentz force due to the presence of the equilibrium magnetic field,
with the result that this field has no effect on the mode dynamics.

The other two solutions to Equation (5.88) are obtained by setting the 2 × 2
determinant involving the x- and y-components of the electric field to zero. The first
wave has the dispersion relation

n2 = R ' 1 −
Π2

e

(ω + Ωe) (ω + Ωi)
, (5.90)

and the eigenvector (Ex, i Ex, 0). This is evidently a right-handed circularly polarized
wave. The second wave has the dispersion relation

n2 = L ' 1 −
Π2

e

(ω − Ωe) (ω − Ωi)
, (5.91)

and the eigenvector (Ex, −i Ex, 0). This is evidently a left-handed circularly polar-
ized wave. At low frequencies (i.e., ω � Ωi), both waves convert into the Alfvén
wave discussed in the previous section. (The fast and slow Alfvén waves are indistin-
guishable for parallel propagation.) Let us now examine the high-frequency behavior
of the right- and left-handed waves.

For the right-handed wave, because Ωe is negative, it is evident that n2 → ∞ as
ω → |Ωe|. This resonance, which corresponds to R → ∞, is termed the electron cy-
clotron resonance. At the electron cyclotron resonance, the transverse electric field
associated with a right-handed wave rotates at the same velocity, and in the same di-
rection, as electrons gyrating around the equilibrium magnetic field. Thus, the elec-
trons experience a continuous acceleration from the electric field, which tends to
increase their perpendicular energy. It is, therefore, not surprising that right-handed
waves, propagating parallel to the equilibrium magnetic field, and oscillating at the
frequency |Ωe|, are absorbed by electrons.

When ω lies just above |Ωe|, we find that n2 is negative, and so there is no wave
propagation. However, for frequencies much greater than the electron cyclotron or



Waves in Cold Plasmas � 129

ω = k vA

ω
ω = k c

Alfvén wave

whistler

ω1

Ωi

|Ωe|

k

Figure 5.1 Schematic diagram showing the dispersion relation for a right-handed
wave propagating parallel to the magnetic field in a magnetized plasma.

plasma frequencies, the solution to Equation (5.90) is approximately n2 = 1. In other
words, ω2 = k2c2, which is the dispersion relation of a right-handed vacuum elec-
tromagnetic wave. Evidently, at some frequency above |Ωe|, the solution for n2 must
pass through zero, and become positive again. Putting n2 = 0 in Equation (5.90), we
find that the equation reduces to

ω2 + Ωe ω − Π
2
e ' 0, (5.92)

assuming that VA � c. The previous equation has only one positive root, at ω = ω1,
where

ω1 ' |Ωe|/2 +

√
Ω2

e/4 + Π2
e > |Ωe|. (5.93)

Above this frequency, the wave propagates once again.
The dispersion curve for a right-handed wave propagating parallel to the equi-

librium magnetic field is sketched in Figure 5.1. The continuation of the Alfvén
wave above the ion cyclotron frequency is called the electron cyclotron wave, or,
sometimes, the whistler wave. The latter terminology is prevalent in ionospheric
and space plasma physics contexts. The wave that propagates above the cutoff fre-
quency, ω1, is a standard right-handed circularly polarized electromagnetic wave,
somewhat modified by the presence of the plasma. The low-frequency branch of the
dispersion curve differs fundamentally from the high-frequency branch, because the
former branch corresponds to a wave that can only propagate through the plasma in
the presence of an equilibrium magnetic field, whereas the latter branch corresponds
to a wave that can propagate in the absence of an equilibrium field.
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The curious name “whistler wave” for the branch of the dispersion relation lying
between the ion and electron cyclotron frequencies is originally derived from iono-
spheric physics. Whistler waves are a very characteristic type of audio-frequency ra-
dio interference, most commonly encountered at high latitudes, which take the form
of brief, intermittent pulses, starting at high frequencies, and rapidly descending in
pitch.

Whistlers were discovered in the early days of radio communication, but were
not explained until much later (Storey 1953). Whistler waves start off as “instanta-
neous” radio pulses, generated by lightning flashes at high latitudes. The pulses are
channeled along the Earth’s dipolar magnetic field, and eventually return to ground
level in the opposite hemisphere. Now, in the frequency range Ωi � ω � |Ωe|, the
dispersion relation (5.90) reduces to

n2 =
k2 c2

ω2 '
Π2

e

ω |Ωe|
. (5.94)

As is well known, wave pulses propagate at the group-velocity,

vg =
dω
dk

= 2 c
√
ω |Ωe|

Πe
. (5.95)

Clearly, the low-frequency components of a pulse propagate more slowly than the
high-frequency components. It follows that, by the time a pulse returns to ground
level, it has been stretched out temporally, because its high-frequency components
arrive slightly before its low-frequency components. This also accounts for the char-
acteristic whistling-down effect observed at ground level.

The shape of whistler pulses, and the way in which the pulse frequency varies in
time, can yield a considerable amount of information about the regions of the Earth’s
magnetosphere through which the pulses have passed. For this reason, many coun-
tries maintain observatories in polar regions—especially Antarctica—which monitor
and collect whistler data.

For a left-handed circularly polarized wave, similar considerations to those de-
scribed previously yield a dispersion curve of the form sketched in Figure 5.2. In
this case, n2 goes to infinity at the ion cyclotron frequency, Ωi, corresponding to the
so-called ion cyclotron resonance (at L→ ∞). At this resonance, the rotating electric
field associated with a left-handed wave resonates with the gyromotion of the ions,
allowing wave energy to be converted into perpendicular kinetic energy of the ions.
There is a band of frequencies, lying above the ion cyclotron frequency, in which the
left-handed wave does not propagate. At very high frequencies, a propagating mode
exists, which is basically a standard left-handed circularly polarized electromagnetic
wave, somewhat modified by the presence of the plasma. The cutoff frequency for
this wave is

ω2 ' −|Ωe|/2 +

√
Ω2

e/4 + Π2
e . (5.96)

As before, the lower branch in Figure 5.2 describes a wave that can only propagate
in the presence of an equilibrium magnetic field, whereas the upper branch describes
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Figure 5.2 Schematic diagram showing the dispersion relation for a left-handed
wave propagating parallel to the magnetic field in a magnetized plasma.

a wave that can propagate in the absence an equilibrium field. The continuation of
the Alfvén wave to just below the ion cyclotron frequency is generally known as the
ion cyclotron wave.

5.10 PERPENDICULAR WAVE PROPAGATION

Consider wave propagation, at arbitrary frequencies, perpendicular to the equilibrium
magnetic field. When θ = π/2, the eigenmode equation (5.42) simplifies to S , −i D, 0

i D, S − n2, 0
0, 0, P − n2


 Ex

Ey

Ez

 = 0. (5.97)

One obvious way of solving this equation is to have P − n2 = 0, or

ω2 = Π2
e + k2c2, (5.98)

with the eigenvector (0, 0, Ez). Because the wavevector now points in the x-direction,
this is clearly a transverse wave polarized with its electric field parallel to the equilib-
rium magnetic field. Particle motions are along the magnetic field, so the mode dy-
namics are completely unaffected by this field. Thus, the wave is identical to the elec-
tromagnetic plasma wave found previously in an unmagnetized plasma. This wave is
known as the ordinary, or O-, mode.
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The other solution to Equation (5.97) is obtained by setting the 2× 2 determinant
involving the x- and y-components of the electric field to zero. The dispersion relation
reduces to

n2 =
R L
S
, (5.99)

with the associated eigenvector Ex (1, −i S/D, 0).
Let us, first of all, search for the cutoff frequencies, at which n2 goes to zero.

According to Equation (5.99), these frequencies are the roots of R = 0 and L = 0.
In fact, we have already solved these equations (recall that cutoff frequencies do not
depend on θ). There are two cutoff frequencies, ω1 and ω2, which are specified by
Equations (5.93) and (5.96), respectively.

Let us, next, search for the resonant frequencies, at which n2 goes to infinity.
According to Equation (5.99), the resonant frequencies are solutions of

S = 1 −
Π2

e

ω2 − Ω2
e
−

Π2
i

ω2 − Ω2
i

= 0. (5.100)

The roots of this equation can be obtained as follows (Cairns 1985). First, we note
that if the first two terms in the middle are equated to zero then we obtain ω = ωUH,
where

ωUH =

√
Π2

e + Ω2
e . (5.101)

If this frequency is substituted into the third term in the middle then the result is far
less than unity. We conclude that ωUH is a good approximation of one of the roots of
Equation (5.100). To obtain the second root, we make use of the fact that the product
of the square of the roots is

Ω2
e Ω

2
i + Π2

e Ω
2
i + Π2

i Ω
2
e ' Ω

2
e Ω

2
i + Π2

i Ω
2
e . (5.102)

We, thus, obtain ω = ωLH, where

ωLH =

√
Ω2

e Ω
2
i + Π2

i Ω
2
e

Π2
e + Ω2

e
. (5.103)

The first resonant frequency,ωUH, is greater than the electron cyclotron or plasma
frequencies, and is called the upper hybrid frequency. The second resonant fre-
quency, ωLH, lies between the electron and ion cyclotron frequencies, and is called
the lower hybrid frequency. Unfortunately, there is no simple explanation of the ori-
gins of the two hybrid resonances in terms of the motions of individual particles. At
low frequencies, the mode in question reverts to the compressional-Alfvén wave dis-
cussed previously. Note that the shear-Alfvén wave does not propagate perpendicular
to the magnetic field.

Using the previous information, and the easily demonstrated fact that

ωLH < ω2 < ωUH < ω1, (5.104)

we deduce that the dispersion curve for the mode in question takes the form sketched
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Figure 5.3 Schematic diagram showing the dispersion relation for a wave propagat-
ing perpendicular to the magnetic field in a magnetized plasma.

in Figure 5.3. The lowest frequency branch corresponds to the compressional-Alfvén
wave. The other two branches constitute the extraordinary, or X-, mode. The upper
branch is basically a linearly polarized (in the y-direction) electromagnetic wave,
somewhat modified by the presence of the plasma. This branch corresponds to a wave
that propagates in the absence of an equilibrium magnetic field. The lowest branch
corresponds to a wave that does not propagate in the absence of an equilibrium field.
Finally, the middle branch corresponds to a wave that converts into an electrostatic
plasma wave in the absence of an equilibrium magnetic field.

Wave propagation at oblique angles is generally more complicated than propaga-
tion parallel or perpendicular to the equilibrium magnetic field, but does not involve
any new physical effects (Stix 1992; Swanson 2003).

5.11 EXERCISES

1. Show that for fields varying as exp[ i (k · r − ω t)] the equations ∇ · E = ρc/ε0
and ∇ · B = 0 follow from Equations (5.4) and (5.5). This explains why the
former equations are not explicitly used in the study of plane waves.

2. Derive Equations (5.31)–(5.33) from first principles, starting from the equa-
tions of motion of individual charged particles.

3. Prove the identity
S 2 − D2 = R L.



134 � Plasma Physics: An Introduction (2nd Edition)

4. Derive the dispersion relation (5.44)–(5.47) from Equation (5.42).

5. Show that the square of F, defined in Equation (5.48), can be written in the
positive definite form

F2 = (R L − P S )2 sin4 θ + 4 P2 D2 cos2 θ.

6. Derive the alternative dispersion relation (5.50) from (5.44).

7. Show that in the limit ω→ 0,

R = L = S = 1 +
Π2

i

Ω2
i

+
Π2

e

Ω2
e
,

D = 0,

P = −
Π2

i

ω2 −
Π2

e

ω2 .

8. Show that
i Vx i

Vy i
=

(i Ex/Ey) − (Ωi/ω)
1 − (Ωi/ω) (i Ex/Ey)

,

i Vx e

Vy e
=

(i Ex/Ey) − (Ωe/ω)
1 − (Ωe/ω) (i Ex/Ey)

.

Hence, deduce that for a right-hand/left-hand circularly polarized wave the
ions and electrons execute circular orbits in the x-y plane in the electron/ion
cyclotron direction.

9. The effect of collisions can be included in the dispersion relation for waves in
cold magnetized plasmas by adding a drag force νs ms Vs to the equation of
motion of species s. Here, νs is the effective collision frequency for species s,
where s stands for either i or e. Thus, the species s equation of motion becomes

ms
dVs

dt
+ νs ms Vs = es (E + Vs × B).

(a) Show that the effect of collisions is equivalent to the substitution

ms → ms

(
1 +

i νs

ω

)
.

(b) For high frequency transverse waves, for which νs � ω, and Πe, |Ωe| �

ω, show that the real and imaginary parts of the wavenumber are

kr '
ω

c

(
1 −

Π2
e

2ω2

)
,

ki '
1

2 c

∑
s

νs Π
2
s

ω2 ,

respectively.
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(c) Show that the dispersion relation for a longitudinal electron plasma os-
cillations is

ω ' Πe − i
∑

s

νs Π
2
s

2Π2
e
.

Hence, demonstrate that collisions cause the oscillation to decay in time.

10. A cold, unmagnetized, homogeneous plasma supports oscillations at the
plasma frequency, ω = Πe. These oscillations have the same frequency ir-
respective of the wavevector, k. However, when pressure is included in the
analysis, the frequency of the oscillation starts to depend on k. We can investi-
gate this effect by treating the (singly-charged) ions as stationary neutralizing
fluid of number density n0. The electron fluid equations are written

∂n
∂t

+ ∇ · (n V) = 0,

me n
dV
dt

= −e n E − ∇p,

p n−Γ = p0 n−Γ0 ,

ε0 ∇ · E = −e (n − n0).

where p0 and Γ = 5/3 are constants. Let n = n0 + n1, p = p0 + p1, V = V1,
and E = E1, where the subscript 0 denotes an equilibrium quantity, and the
subscript 1 denotes a small perturbation. Develop a set of linear equations suf-
ficient to solve for the perturbed variables. Assuming that all perturbed quan-
tities vary in space and time as exp[ i (k · r − ω t)], find the dispersion relation
linking ω and k. Find expressions for the phase-velocity and group-velocity of
the wave as functions of ω.
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C H A P T E R 6

Waves in
Inhomogeneous
Plasmas

6.1 INTRODUCTION

In the previous chapter, we investigated wave propagation through homogeneous
plasmas. In this chapter, we shall broaden our approach to deal with the far more
interesting case of wave propagation through inhomogeneous plasmas. To be more
exact, we shall consider wave propagation in the limit in which the characteristic
variation lengthscale, L, of equilibrium quantities in the plasma is much longer than
the wavelength of the wave. In other words, k L � 1, where k is the wavenumber.
In this limit, we expect our wave solutions to closely resemble those found in the
previous chapter (recall that the latter solutions correspond to k L → ∞). For the
sake of simplicity, we shall (mostly) restrict our investigation to waves propagating
through unmagnetized plasmas. However, the techniques described in this chapter
can be generalized, in a fairly straightforward manner, to deal with other types of
plasma wave (Budden 1985).

6.2 WKB SOLUTIONS

Let us start off by examining a very simple case. Consider a plane electromagnetic
wave, of angular frequency ω, propagating along the z-axis in an unmagnetized
plasma whose refractive index, n, is a function of z. Let us assume that the wave
normal is initially aligned along the z-axis, and, furthermore, that the wave starts off

polarized in the y-direction. It is easily demonstrated that the wave normal subse-
quently remains aligned along the z-axis, and also that the polarization state does not
change. Thus, the wave is fully described by

Ey(z, t) ≡ Ey(z) exp(−iω t), (6.1)
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and
Bx(z, t) ≡ Bx(z) exp(−iω t). (6.2)

It can readily be shown that Ey(z) and Bx(z) satisfy the differential equations

d2Ey

dz2 = −k2
0 n2 Ey, (6.3)

and
d (c Bx)

dz
= −i k0 n2 Ey, (6.4)

respectively. Here, k0 = ω/c is the wavenumber in free space. Of course, the actual
wavenumber is k = k0 n.

The solution of Equation (6.3) for the case of a homogeneous plasma, for which
n is constant, is simply

Ey(z) = A e i φ(z), (6.5)

where A is a constant, and
φ(z) = ±k0 n z. (6.6)

The solution (6.5) represents a wave of constant amplitude A, and phase φ(z). Accord-
ing to Equation (6.6), there are two independent waves that can propagate through
the plasma. The upper sign corresponds to a wave that propagates in the +z-direction,
whereas the lower sign corresponds to a wave that propagates in the −z-direction.
Both waves propagate at the constant phase-velocity c/n.

In general, if n = n(z) then the solution of Equation (6.3) does not remotely re-
semble the wave-like solution (6.5). However, in the limit in which n(z) is a “slowly
varying” function of z (exactly how slowly varying is something that will be estab-
lished later on), we expect to recover wave-like solutions. Let us suppose that n(z) is
indeed a “slowly varying” function, and let us try substituting the wave-like solution
(6.5) into Equation (6.3). We obtain(

dφ
dz

)2

= k2
0 n2 + i

d2φ

dz2 . (6.7)

This is a nonlinear differential equation which, in general, is very difficult to solve.
However, we note that if n is a constant then d2φ/dz2 = 0. It is, therefore, reasonable
to suppose that if n(z) is a “slowly varying” function then the last term on the right-
hand side of the previous equation is relatively small. Thus, to a first approximation,
Equation (6.7) yields

dφ
dz
' ±k0 n, (6.8)

and
d2φ

dz2 ' ±k0
dn
dz
. (6.9)

It is clear, from a comparison of Equations (6.7) and (6.9), that n(z) can be regarded
as a “slowly varying” function of z [i.e., the second term on the right-hand side of
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Equation (6.7) is negligible compared to the first] as long as (dn/dz)/(k0 n2) � 1. In
other words, the approximation holds provided that the variation lengthscale of the
refractive index is far longer than the wavelength of the wave.

The second approximation to the solution is obtained by substituting Equa-
tion (6.9) into the right-hand side of Equation (6.7):

dφ
dz
' ±

(
k2

0 n2 ± i k0
dn
dz

)1/2

. (6.10)

This gives
dφ
dz
' ±k0 n

(
1 ±

i
k0 n2

dn
dz

)1/2

' ±k0 n +
i

2 n
dn
dz
, (6.11)

where use has been made of the binomial expansion. The previous expression can be
integrated to give

φ(z) ' ±k0

∫ z

n dz′ + i log
(
n1/2

)
. (6.12)

Substitution of Equation (6.12) into Equation (6.5) yields the final result

Ey(z) ' n−1/2 exp
(
±i k0

∫ z

n dz′
)
. (6.13)

It follows from Equation (6.4) that

c Bx(z) ' ∓n1/2 exp
(
±i k0

∫ z

n dz′
)
−

i
2 k0 n3/2

dn
dz

exp
(
±i k0

∫ z

n dz′
)
. (6.14)

The second term on the right-hand side of the previous expression is small compared
to the first, and is usually neglected.

We can test to what extent expression (6.13) is a good solution of Equation (6.3)
by substituting this expression into the left-hand side of the equation. The result is

1
n1/2

3
4

(
1
n

dn
dz

)2

−
1

2 n
d2n
dz2

 exp
(
±i k0

∫ z

n dz′
)

=

3
4

(
1
n

dn
dz

)2

−
1

2 n
d2n
dz2

 Ey.

(6.15)

This quantity needs to be small compared to k2
0 n2 Ey. Hence, the condition for Equa-

tion (6.13) to be a good solution of Equation (6.3) becomes

1
k2

0

∣∣∣∣∣∣∣34
(

1
n2

dn
dz

)2

−
1

2 n3

d2n
dz2

∣∣∣∣∣∣∣ � 1. (6.16)

The solutions

Ey(z) ' n−1/2 exp
(
±i k0

∫ z

n dz′
)
, (6.17)

c Bx(z) ' ∓n1/2 exp
(
±i k0

∫ z

n dz′
)
, (6.18)
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to the nonuniform wave equations (6.3) and (6.4) are usually referred to as WKB so-
lutions, in honor of G. Wentzel (Wentzel 1926), H.A. Kramers (Kramers 1926), and
L. Brillouin (Brilloiun 1926), who are credited with independently discovering these
solutions (in a quantum mechanical context) in 1926. Actually, H. Jeffries (Jeffries
1924) wrote a paper on WKB solutions (in a wave propagation context) in 1924.
Hence, these solutions are sometimes called the WKBJ solutions (or even the JWKB
solutions). To be strictly accurate, the WKB solutions were first discussed by Li-
ouville (Liouville 1837) and Green (Green 1837) in 1837, and again by Rayleigh
(Rayleigh 1912) in 1912. In the following, we refer to Equations (6.17) and (6.18)
as WKB solutions, because this is what they are most commonly called. However, it
should be understood that, in doing so, we are not making any definitive statement
as to the credit due to various scientists in discovering them. More information about
WKB solutions can be found in the classic monograph of Heading (Heading 1962).

If a propagating wave is normally incident on an interface at which the refrac-
tive index suddenly changes (for instance, if a light wave propagating through air
is normally incident on a glass slab) then there is generally significant reflection of
the wave (Fitzpatrick 2013). However, according to the WKB solutions, (6.17) and
(6.18), when a propagating wave is normally incident on a medium in which the re-
fractive index changes slowly along the direction of propagation of the wave then
the wave is not reflected at all. This is true even if the refractive index varies very
substantially along the path of propagation of the wave, as long as it varies suffi-
ciently slowly. The WKB solutions imply that, as the wave propagates through the
medium, its wavelength gradually changes. In fact, the wavelength at position z is
approximately λ(z) = 2π/[k0 n(z)]. Equations (6.17) and (6.18) also imply that the
amplitude of the wave gradually changes as it propagates. In fact, the amplitude of
the electric field component is inversely proportional to n1/2, whereas the ampli-
tude of the magnetic field component is directly proportional to n1/2. Note, however,
that the energy flux in the z-direction, which is given by the the Poynting vector
−(Ey B ∗x + E ∗y Bx)/(4 µ0), remains constant (assuming that n is predominately real).

Of course, the WKB solutions (6.17) and (6.18) are only approximations. In
reality, a wave propagating through a medium in which the refractive index is a
slowly varying function of position is subject to a small amount of reflection. How-
ever, it is easily demonstrated that the ratio of the reflected amplitude to the incident
amplitude is of order (dn/dz)/(k0 n2) (Budden 1985). Thus, as long as the refractive
index varies on a much longer lengthscale than the wavelength of the radiation, the
reflected wave is negligibly small. This conclusion remains valid as long as the in-
equality (6.16) is satisfied. This inequality obviously breaks down in the vicinity of
a point where n2 = 0. We would, therefore, expect strong reflection of the incident
wave from such a point. Furthermore, the WKB solutions also break down at a point
where n2 → ∞, because the amplitude of Bx becomes infinite.
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6.3 CUTOFFS

We have seen that electromagnetic wave propagation (in one dimension) through
an inhomogeneous plasma, in the physically relevant limit in which the variation
lengthscale of the plasma is much greater than the wavelength of the wave, is well
described by the WKB solutions, (6.17) and (6.18). However, these solutions break
down in the immediate vicinity of a cutoff, where n2 = 0, or a resonance, where
n2 → ∞. Let us now examine what happens to electromagnetic waves propagating
through a plasma when they encounter a cutoff or a resonance.

Suppose that a cutoff is located at z = 0, so that

n2 = a z + O
(
z2

)
(6.19)

in the immediate vicinity of this point, where a > 0. It is evident, from the WKB
solutions, (6.17) and (6.18), that the cutoff point lies at the boundary between a region
(z > 0) in which electromagnetic waves propagate, and a region (z < 0) in which the
waves are evanescent. In a physically realistic solution, we would expect the wave
amplitude to decay (as z decreases) in the evanescent region z < 0. Let us search for
such a wave solution.

In the immediate vicinity of the cutoff point, z = 0, Equations (6.3) and (6.19)
yield

d2Ey

dẑ2 + ẑ Ey = 0, (6.20)

where
ẑ = (k2

0 a)1/3 z. (6.21)

Equation (6.20) is a standard equation, known as Airy’s equation, and possesses two
independent solutions, denoted Ai(−ẑ) and Bi(−ẑ) (Abramowitz and Stegun 1965).

The second solution, Bi(−ẑ), is unphysical, because it blows up as ẑ→ −∞. The
physical solution, Ai(−ẑ), has the asymptotic behavior

Ai(−ẑ) '
1

2
√
π
|ẑ|−1/4 exp

(
−

2
3
|ẑ|3/2

)
(6.22)

in the limit ẑ→ −∞, and

Ai(−ẑ) '
1
√
π

ẑ−1/4 sin
(

2
3

ẑ3/2 +
π

4

)
(6.23)

in the limit ẑ→ +∞.
Suppose that a unit amplitude plane electromagnetic wave, polarized in the y-

direction, is launched from an antenna, located at large positive z, toward the cutoff

point at z = 0. It is assumed that n = 1 at the launch point. In the nonevanescent
region, z > 0, the wave can be represented as a linear combination of propagating
WKB solutions:

Ey(z) = n−1/2 exp
(
−i k0

∫ z

0
n dz′

)
+ R n−1/2 exp

(
+i k0

∫ z

0
n dz′

)
. (6.24)
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The first term on the right-hand side of the previous equation represents the incident
wave, whereas the second term represents the reflected wave. The complex constant
R is the coefficient of reflection. In the vicinity of the cutoff point (i.e., z small and
positive, which corresponds to ẑ large and positive), the previous expression reduces
to

Ey(ẑ) = (k0/a)1/6
[
ẑ−1/4 exp

(
−i

2
3

ẑ3/2
)

+ R ẑ−1/4 exp
(
+i

2
3

ẑ3/2
)]
. (6.25)

However, we have another expression for the wave in this region:

Ey(ẑ) = C Ai(−ẑ) '
C
√
π

ẑ−1/4 sin
(

2
3

ẑ3/2 +
π

4

)
, (6.26)

where C is an arbitrary constant. The previous equation can be written

Ey(ẑ) =
C
2

√
i
π

[
ẑ−1/4 exp

(
−i

2
3

ẑ3/2
)
− i ẑ−1/4 exp

(
+i

2
3

ẑ3/2
)]
. (6.27)

A comparison of Equations (6.25) and (6.27) reveals that

R = −i. (6.28)

We conclude that at a cutoff point there is total reflection of the incident wave (be-
cause |R| = 1) with a −π/2 phase-shift.

6.4 RESONANCES

Suppose, now, that a resonance is located at z = 0, so that

n2 =
b

z + i ε
+ O(1) (6.29)

in the immediate vicinity of this point, where b > 0. Here, ε is a small real constant.
We introduce ε in our analysis principally as a mathematical artifice to ensure that
Ey remains single-valued and finite. However, as will become clear later on, ε has a
physical significance in terms of the damping or the spontaneous excitation of waves.

In the immediate vicinity of the resonance point, z = 0, Equations (6.3) and (6.29)
yield

d2Ey

dẑ2 +
Ey

ẑ + i ε̂
= 0, (6.30)

where
ẑ = (k2

0 b) z, (6.31)

and ε̂ = (k2
0 b) ε. This equation is singular at the point ẑ = −i ε̂. Thus, it is necessary to

introduce a branch-cut into the complex-ẑ plane, so as to ensure that Ey(ẑ) is single-
valued. If ε > 0 then the branch-cut lies in the lower half-plane, whereas if ε < 0
then the branch-cut lies in the upper half-plane. (See Figure 6.1.) Suppose that the
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complex z-plane

complex z-plane

singularity

branch-cut

Real z axis

z = 0 z

z

ǫ > 0

ǫ < 0

singularity

Real z axis

z = 0

branch-cut

Figure 6.1 Branch-cuts in the z-plane close to a wave resonance.

argument of ẑ is 0 on the positive real ẑ-axis. It follows that the argument of ẑ on the
negative real ẑ-axis is +π when ε > 0, and −π when ε < 0.

Let

y = 2
√

ẑ, (6.32)

Ey(y) = y ψ(y). (6.33)

In the limit ε → 0, Equation (6.30) transforms into

d2ψ

dy2 +
1
y

dψ
dy

+

(
1 −

1
y2

)
ψ = 0. (6.34)

This is a standard equation, known as Bessel’s equation of order one (Abramowitz
and Stegun 1965), and possesses two independent solutions, denoted J1(y) and Y1(y),
respectively. Thus, on the positive real ẑ-axis, we can write the most general solution
to Equation (6.30) in the form

Ey(ẑ) = A
√

ẑ J1

(
2
√

ẑ
)

+ B
√

ẑ Y1

(
2
√

ẑ
)
, (6.35)

where A and B are two arbitrary constants.
Let

y = 2
√

a ẑ, (6.36)

Ey(y) = y ψ(y), (6.37)
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where
a = exp

[
−i π sgn(ε)

]
. (6.38)

Note that the argument of a ẑ is zero on the negative real ẑ-axis. In the limit ε → 0,
Equation (6.30) transforms into

d2ψ

dy2 +
1
y

dψ
dy
−

(
1 +

1
y2

)
ψ = 0. (6.39)

This is a standard equation, known as Bessel’s modified equation of order one
(Abramowitz and Stegun 1965), and possesses two independent solutions, denoted
I1(y) and K1(y), respectively. Thus, on the negative real ẑ-axis, we can write the most
general solution to Equation (6.30) in the form

Ey(ẑ) = C
√

a ẑ I1

(
2
√

a ẑ
)

+ D
√

a ẑ K1

(
2
√

a ẑ
)
, (6.40)

where C and D are two arbitrary constants.
The Bessel functions J1(z), Y1(z), I1(z), and K1(z) are all perfectly well-defined

(i.e., analytic) for complex arguments, so the two expressions (6.35) and (6.40) must,
in fact, be identical. In particular, the constants C and D must somehow be related
to the constants A and B. In order to establish this relationship, it is convenient to
investigate the behavior of the expressions (6.35) and (6.40) in the limit of small ẑ:
that is, |ẑ| � 1. In this limit,

√
ẑ J1

(
2
√

ẑ
)

= ẑ + O
(
ẑ2

)
, (6.41)

√
a ẑ I1

(
2
√

a ẑ
)

= −ẑ + O
(
ẑ2

)
, (6.42)

√
ẑ Y1

(
2
√

ẑ
)

= −
1
π

[
1 − (ln |ẑ| + 2 γ − 1) ẑ

]
+ O

(
ẑ2

)
, (6.43)

√
a ẑ K1

(
2
√

a ẑ
)

=
1
2

[
1 − (ln |ẑ| + 2 γ − 1) ẑ − i arg(a) ẑ

]
+ O

(
ẑ2

)
, (6.44)

where γ is Euler’s constant (Abramowitz and Stegun 1965), and ẑ is assumed to lie
on the positive real ẑ-axis. It follows, by a comparison of Equations (6.35), (6.40),
and (6.41)–(6.44), that the choice

C = −A + i
π

2
sgn(ε) D = −A − i sgn(ε) B, (6.45)

D = −
2
π

B, (6.46)

ensures that the expressions (6.35) and (6.40) are indeed identical.
In the limit |ẑ| � 1,

√
a ẑ I1

(
2
√

a ẑ
)
'

1
2
√
π
|ẑ|1/4 exp

(
+2

√
|ẑ|

)
, (6.47)

√
a ẑ K1

(
2
√

a ẑ
)
'

√
π

2
|ẑ|1/4 exp

(
−2

√
|ẑ|

)
, (6.48)
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where ẑ is assumed to lie on the negative real ẑ-axis. It is clear that the I1 solution is
unphysical, because it blows up in the evanescent region (ẑ < 0). Thus, the coefficient
C in expression (6.40) must be set to zero in order to prevent Ey(ẑ) from blowing up
as ẑ→ −∞. According to Equation (6.45), this constraint implies that

A = −i sgn(ε) B. (6.49)

In the limit |ẑ| � 1,

√
ẑ J1

(
2
√

ẑ
)
'

1
√
π

ẑ1/4 cos
(
2
√

z −
3
4
π

)
, (6.50)

√
ẑ Y1

(
2
√

ẑ
)
'

1
√
π

ẑ1/4 sin
(
2
√

z −
3
4
π

)
, (6.51)

where ẑ is assumed to lie on the positive real ẑ-axis. It follows from Equations (6.35),
(6.49), (6.50), and (6.51) that, in the nonevanescent region (ẑ > 0), the most general
physical solution takes the form

Ey(ẑ) = A′
[
sgn(ε) + 1

]
ẑ1/4 exp

[
+i

(
2
√

ẑ −
3
4
π

)]
+ A′

[
sgn(ε) − 1

]
ẑ1/4 exp

[
−i

(
2
√

ẑ +
3
4
π

)]
, (6.52)

where A′ is an arbitrary constant.
Suppose that a plane electromagnetic wave, polarized in the y-direction, is

launched from an antenna, located at large positive z, toward the resonance point
at z = 0. It is assumed that n = 1 at the launch point. In the nonevanescent region,
z > 0, the wave can be represented as a linear combination of propagating WKB
solutions:

Ey(z) = E n−1/2 exp
(
−i k0

∫ z

0
n dz′

)
+ F n−1/2 exp

(
+i k0

∫ z

0
n dz′

)
. (6.53)

The first term on the right-hand side of the previous equation represents the incident
wave, whereas the second term represents the reflected wave. Here, E is the ampli-
tude of the incident wave, and F is the amplitude of the reflected wave. In the vicinity
of the resonance point (i.e., z small and positive, which corresponds to ẑ large and
positive), the previous expression reduces to

Ey(ẑ) ' (k0 b)−1/2
[
E ẑ1/4 exp

(
−i 2
√

ẑ
)

+ F ẑ1/4 exp
(
+i 2
√

ẑ
)]
. (6.54)

A comparison of Equations (6.52) and (6.54) shows that if ε > 0 then E = 0. In
other words, there is a reflected wave, but no incident wave. This corresponds to the
spontaneous excitation of waves in the vicinity of the resonance. On the other hand,
if ε < 0 then F = 0. In other words, there is an incident wave, but no reflected
wave. This corresponds to the total absorption of incident waves in the vicinity of
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the resonance. It is clear that if ε > 0 then ε represents some sort of spontaneous
wave excitation mechanism, whereas if ε < 0 then ε represents a wave absorption, or
damping, mechanism. We would normally expect plasmas to absorb incident wave
energy, rather than spontaneously emit waves, so we conclude that, under most cir-
cumstances, ε < 0, and resonances absorb incident waves without reflection.

6.5 RESONANT LAYERS

Consider the situation, studied in the previous section, in which a plane wave, polar-
ized in the y-direction, is launched along the z-axis, from an antenna located at large
positive z, and absorbed at a resonance located at z = 0. In the vicinity of the resonant
point, the electric component of the wave satisfies

d2Ey

dz2 +
k2

0 b
z + i ε

Ey = 0, (6.55)

where b > 0 and ε < 0.
The time-averaged Poynting flux in the z-direction is written

Pz = −
(Ey B ∗x + E ∗y Bx)

4 µ0
. (6.56)

Now, the Faraday-Maxwell equation yields

iω Bx = −
dEy

dz
. (6.57)

Thus, we have

Pz = −
i

4 µ0 ω

(
dEy

dz
E ∗y −

dE ∗y
dz

Ey

)
. (6.58)

Let us ascribe any variation of Pz with z to the wave energy emitted by the plasma.
We then obtain

dPz

dz
= W, (6.59)

where W is the power emitted by the plasma per unit volume. It follows that

W = −
i

4 µ0 ω

d2Ey

dz2 E ∗y −
d2E ∗y
dz2 Ey

 . (6.60)

Equations (6.55) and (6.60) yield

W =

 k2
0 b

2 µ0 ω

 ( ε

z2 + ε2

)
|Ey|

2. (6.61)

Note that W < 0, because ε < 0, so wave energy is absorbed by the plasma. It is
clear, from the previous formula, that the absorption takes place in a narrow layer, of
thickness |ε|, centered on the resonance point, z = 0.
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6.6 COLLISIONAL DAMPING

Let us now consider a real-life damping mechanism. Equation (5.15) specifies the
linearized Ohm’s law in the collisionless cold-plasma approximation. In the presence
of collisions, this expression acquires an extra term (see Section 4.13), such that

E = −V × B0 +
j × B0

ne e
− i

ωme

ne e2 j +
νe me

ne e2 j, (6.62)

where νe ≡ τ
−1
e is the electron collision frequency. Here, for the sake of simplicity, we

have neglected the small difference between the parallel and perpendicular plasma
electrical conductivities. When Equation (6.62) is used to calculate the dielectric
permittivity for a right-handed wave, in the limit ω � Ωi, we obtain

R ' 1 −
Π2

e

ω (ω + i νe − |Ωe|)
. (6.63)

A right-handed circularly polarized wave, propagating parallel to the magnetic
field, is governed by the dispersion relation (see Section 5.9)

n2 = R ' 1 +
Π2

e

ω (|Ωe| − ω − i νe)
. (6.64)

Suppose that
|Ωe| = ω + |Ωe|

′ z, (6.65)

so that the electron cyclotron resonance is located at z = 0. We also assume that
|Ωe|

′ > 0, so that the evanescent region corresponds to z < 0. It follows that, in the
immediate vicinity of the resonance,

n2 '
b

z + i ε
, (6.66)

where

b =
Π2

e

ω |Ωe|
′
, (6.67)

and
ε = −

νe

|Ωe|
′
. (6.68)

It can be seen that ε < 0, which is consistent with the absorption of incident wave
energy by the resonant layer. The approximate width of the resonant layer is

δ ∼ |ε| =
νe

|Ωe|
′
. (6.69)

Note that the damping mechanism—in this case collisions—controls the thick-
ness of the resonant layer, but does not control the amount of wave energy absorbed
by the layer. In fact, in the simple theory outlined previously, all of the incident wave
energy is absorbed by the layer.
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6.7 PULSE PROPAGATION

Consider the situation, studied in Section 6.3, in which a plane wave, polarized in the
y-direction, is launched along the z-axis, from an antenna located at large positive
z, and reflected from a cutoff located at z = 0. Up to now, we have only considered
infinite wave-trains, characterized by a discrete frequency, ω. Let us now consider
the more realistic case in which the antenna emits a finite pulse of radio waves.

The pulse structure is conveniently represented as

Ey(t) =

∫ ∞

−∞

F(ω) e−iω t dω, (6.70)

where Ey(t) is the electric field produced by the antenna, which is assumed to lie at
z = a. Suppose that the pulse is a signal of roughly constant (angular) frequency ω0,
which lasts a time T , where T is long compared to 1/ω0. It follows that F(ω) pos-
sesses narrow maxima around ω = ±ω0. In other words, only those frequencies that
lie very close to the central frequency, ω0, play a significant role in the propagation
of the pulse.

Each component frequency of the pulse yields a wave that propagates indepen-
dently along the z-axis, in a manner specified by the appropriate WKB solution [see
Equations (6.17) and (6.18)]. Thus, if Equation (6.70) specifies the signal at the an-
tenna (i.e., at z = a) then the signal at coordinate z (where z < a) is given by

Ey(z, t) =

∫ ∞

−∞

F(ω)
n1/2(ω, z)

e i φ(ω,z,t) dω, (6.71)

where

φ(ω, z, t) =
ω

c

∫ a

z
n(ω, z) dz′ − ω t. (6.72)

Here, we have made use of the fact that k0 = ω/c.
Equation (6.71) can be regarded as a contour integral in ω-space. The quantity

F/n1/2 is a relatively slowly varying function of ω, whereas the phase, φ, is a large
and rapidly varying function of ω. The rapid oscillations of exp( i φ) over most of
the path of integration ensure that the integrand averages almost to zero. However,
this cancellation argument does not apply to places on the integration path where
the phase is stationary: that is, places where φ(ω) has an extremum. The integral can,
therefore, be estimated by finding those points where φ(ω) has a vanishing derivative,
evaluating (approximately) the integral in the neighborhood of each of these points,
and summing the contributions. This procedure is called the method of stationary
phase (Budden 1985).

Suppose that φ(ω) has a vanishing first derivative at ω = ωs. In the neighborhood
of this point, φ(ω) can be expanded as a Taylor series,

φ(ω) = φs +
1
2
φ′′s (ω − ωs)2 + · · · . (6.73)

Here, the subscript s is used to indicate φ or its second derivative evaluated atω = ωs.
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Because F(ω)/n1/2(ω, z) is slowly varying, the contribution to the integral from this
stationary phase point is approximately

Ey s '
F(ωs) e i φs

n1/2(ωs, z)

∫ ∞

−∞

exp
[

i
2
φ′′s (ω − ωs)2

]
dω. (6.74)

The previous expression can be written in the form

Ey s '
F(ωs) e i φs

n1/2(ωs, z)

√
4π
φ′′s

∫ ∞

0

[
cos

(
π t2/2

)
+ i sin

(
π t2/2

)]
dt, (6.75)

where
π

2
t2 =

1
2
φ′′s (ω − ωs)2. (6.76)

The integrals in the previous expression are known as Fresnel integrals (Abramowitz
and Stegun 1965), and can be shown to take the values∫ ∞

0
cos

(
π t2/2

)
dt =

∫ ∞

0
sin

(
π t2/2

)
dt =

1
2
. (6.77)

It follows that

Ey s '

√
2π i
φ′′s

F(ωs)
n1/2(ωs, z)

e i φs . (6.78)

If there is more than one point of stationary phase in the range of integration then the
integral is approximated as a sum of terms similar to that in the previous formula.

Integrals of the form (6.71) can be calculated exactly using the method of steepest
descent (Brillouin 1960; Budden 1985). The stationary phase approximation (6.78)
agrees with the leading term of the method of steepest descent (which is far more
difficult to implement than the method of stationary phase) provided that φ(ω) is real
(i.e., provided that the stationary point lies on the real axis). If φ is complex, however,
then the stationary phase method can yield erroneous results.

It follows, from the previous discussion, that the right-hand side of Equa-
tion (6.71) averages to a very small value, expect for those special values of z and t
at which one of the points of stationary phase in ω-space coincides with one of the
peaks of F(ω). The locus of these special values of z and t can obviously be regarded
as the equation of motion of the pulse as it propagates along the z-axis. Thus, the
equation of motion is specified by (

∂φ

∂ω

)
ω=ω0

= 0, (6.79)

which yields

t =
1
c

∫ a

z

[
∂(ω n)
∂ω

]
ω=ω0

dz′. (6.80)
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Suppose that the z-velocity of a pulse of central frequency ω0 at coordinate z is
given by −uz(ω0, z). The differential equation of motion of the pulse is then dt =

−dz/uz. This can be integrated, using the boundary condition z = a at t = 0, to give
the full equation of motion:

t =

∫ a

z

dz′

uz
. (6.81)

A comparison of Equations (6.80) and (6.81) yields

uz(ω0, z) = c
/(
∂[ω n(ω, z)]

∂ω

)
ω=ω0

. (6.82)

The velocity uz is usually called the group-velocity. It is easily demonstrated that the
previous expression for the group-velocity is entirely consistent with that given in
Equation (5.72).

The dispersion relation for an electromagnetic plasma wave propagating through
an unmagnetized plasma is [see Equation (6.121)]

n(ω, z) =

[
1 −

Π2
e (z)
ω2

]1/2

. (6.83)

Here, we have assumed that equilibrium quantities are functions of z only, and that
the wave propagates along the z-axis. The phase-velocity of waves of frequency ω
propagating along the z-axis is given by

vz(ω, z) =
c

n(ω, z)
= c

[
1 −

Π2
e (z)
ω2

]−1/2

. (6.84)

According to Equations (6.82) and (6.83), the corresponding group-velocity is

uz(ω, z) = c
[
1 −

Π2
e (z)
ω2

]1/2

. (6.85)

It follows that
vz uz = c2. (6.86)

Let us assume that Πe(0) = ω, and Πe(z) < ω for z > 0, which implies that the
reflection point corresponds to z = 0. It is clear from Equations (6.84) and (6.85)
that the phase-velocity of the wave is always greater than the velocity of light in
vacuum, whereas the group-velocity is always less than this velocity. Furthermore,
as the reflection point, z = 0, is approached from positive z, the phase-velocity tends
to infinity, whereas the group-velocity tends to zero.

Although we have only analyzed the motion of the pulse as it travels from the
antenna to the reflection point, it is easily demonstrated that the speed of the reflected
pulse at position z is the same as that of the incident pulse. In other words, the group
velocities of pulses traveling in opposite directions are of equal magnitude.
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6.8 RAY TRACING

Let us now generalize the preceding analysis so that we can deal with pulse propa-
gation though a three-dimensional magnetized plasma.

A general wave problem can be written as a set of n coupled, linear, homoge-
neous, first-order, partial-differential equations, which take the form (Hazeltine and
Waelbroeck 2004)

M( i ∂/∂t,−i∇, r, t)ψ = 0. (6.87)

The vector-field ψ(r, t) has n components (e.g., ψ might consist of E, B, j, and V)
characterizing some small disturbance, and M is an n × n matrix characterizing the
undisturbed plasma.

The lowest order WKB approximation is premised on the assumption that M
depends so weakly on r and t that all of the spatial and temporal dependence of
the components of ψ(r, t) is specified by a common factor exp( i φ). Thus, Equa-
tion (6.87) reduces to

M(ω,k, r, t)ψ = 0, (6.88)

where

k ≡ ∇φ, (6.89)

ω ≡ −
∂φ

∂t
. (6.90)

In general, Equation (6.88) has many solutions, corresponding to the many different
types and polarizations of waves that can propagate through the plasma in question,
all of which satisfy the dispersion relation

M(ω,k, r, t) = 0, (6.91)

whereM ≡ det(M). As is easily demonstrated (see Section 6.2), the WKB approx-
imation is valid provided that the characteristic variation lengthscale and variation
timescale of the plasma are much longer than the wavelength, 2π/k, and the period,
2π/ω, respectively, of the wave in question.

Let us concentrate on one particular solution of Equation (6.88) (e.g., on one
particular type of plasma wave). For this solution, the dispersion relation (6.91) yields

ω = Ω(k, r, t) : (6.92)

that is, the dispersion relation yields a unique frequency for a wave of a given
wavevector, k, located at a given point, (r, t), in space and time. There is also a
unique ψ associated with this frequency, which is obtained from Equation (6.88). To
lowest order, we can neglect the variation of ψ with r and t. A general pulse solution
is written

ψ(r, t) =

∫
F(k)ψ e i φ d3k, (6.93)
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where (locally)
φ = k · r − Ω t, (6.94)

and F(k) is a function that specifies the initial structure of the pulse in k-space.
The integral (6.93) averages to zero, except at a point of stationary phase, where

∇kφ = 0. (See Section 6.7.) Here, ∇k is the k-space gradient operator. It follows that
the (instantaneous) trajectory of the pulse matches that of a point of stationary phase:

∇kφ = r − vg t = 0, (6.95)
where

vg =
∂Ω

∂k
(6.96)

is the group-velocity. Thus, the instantaneous velocity of a pulse is always equal to
the local group-velocity.

Let us now determine how the wavevector, k, and the angular frequency, ω, of
a pulse evolve as the pulse propagates through the plasma. We start from the cross-
differentiation rules [see Equations (6.89) and (6.90)]:

∂kα
∂t

+
∂ω

∂rα
= 0, (6.97)

∂kβ
∂rα
−
∂kα
∂rβ

= 0. (6.98)

Here, α and β run from 1 to 3, and denote Cartesian components. Equations (6.92),
(6.97), and (6.98) yield [making use of the Einstein summation convention (Riley
1974)]

∂kα
∂t

+
∂Ω

∂kβ

∂kβ
∂rα

+
∂Ω

∂rα
=
∂kα
∂t

+
∂Ω

∂kβ

∂kα
∂rβ

+
∂Ω

∂rα
= 0, (6.99)

or
dk
dt
≡
∂k
∂t

+ (vg · ∇) k = −∇Ω. (6.100)

In other words, the variation of k, as seen in a frame co-moving with the pulse, is
determined by the spatial gradients in Ω.

Partial differentiation of Equation (6.92) with respect to t gives

∂ω

∂t
=
∂Ω

∂kβ

∂kβ
∂t

+
∂Ω

∂t
= −

∂Ω

∂kβ

∂ω

∂rβ
+
∂Ω

∂t
, (6.101)

which can be written dω
dt
≡
∂ω

∂t
+ (vg · ∇)ω =

∂Ω

∂t
. (6.102)

In other words, the variation of ω, as seen in a frame co-moving with the pulse, is
determined by the time variation of Ω.

According to the previous analysis, the evolution of a pulse propagating though
a spatially and temporally nonuniform plasma can be determined by solving the ray
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equations:

dr
dt

=
∂Ω

∂k
, (6.103)

dk
dt

= −∇Ω, (6.104)

dω
dt

=
∂Ω

∂t
. (6.105)

The previous equations are conveniently rewritten in terms of the dispersion relation
(6.91) (Hazeltine and Waelbroeck 2004):

dr
dt

= −
∂M/∂k
∂M/∂ω

, (6.106)

dk
dt

=
∂M/∂r
∂M/∂ω

, (6.107)

dω
dt

= −
∂M/∂t
∂M/∂ω

. (6.108)

Incidentally, the variation in the amplitude of the pulse, as it propagates through the
plasma, can only be determined by expanding the WKB solutions to higher order.
(See Exercises 3 and 4.)

6.9 IONOSPHERIC RADIO WAVE PROPAGATION

To a first approximation, the Earth’s ionosphere consists of an unmagnetized, hori-
zontally stratified, partially ionized gas (Budden 1985). The dispersion relation for
the electromagnetic plasma wave takes the form [see Equation (5.98)]

M = ω2 − k2c2 − Π2
e = 0, (6.109)

where

Πe =

√
N e2

ε0 me
. (6.110)

Here, N = N(z) is the density of free electrons in the ionosphere, and z is a coordinate
that measures height above the surface of the Earth. (The curvature of the Earth, the
Earth’s magnetic field, and collisions are neglected in the following analysis.)

Now,

∂M

∂ω
= 2ω, (6.111)

∂M

∂k
= −2 c2 k, (6.112)

∂M

∂r
= −∇Π2

e , (6.113)

∂M

∂t
= 0. (6.114)
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Thus, the ray equations, (6.106)–(6.108), yield

dr
dt

=
c2

ω
k, (6.115)

dk
dt

= −
∇Π2

e

2ω
, (6.116)

dω
dt

= 0. (6.117)

Evidently, the frequency of a radio pulse does not change as it propagates through the
ionosphere, provided that N(z) does not vary in time. Furthermore, it follows from
Equations (6.115)–(6.117), and the fact that Πe = Πe(z), that a radio pulse that starts
off at ground level propagating in the x-z plane, say, will continue to propagate in
this plane.

For pulse propagation in the x-z plane, we have

dx
dt

=
c2 kx

ω
, (6.118)

dz
dt

=
c2 kz

ω
, (6.119)

dkx

dt
= 0. (6.120)

The dispersion relation (6.109) yields

n2 =
(k2

x + k2
z ) c2

ω2 = 1 −
Π2

e

ω2 , (6.121)

where n(z) is the refractive index.
Let us assume that n = 1 at z = 0, which is equivalent to the reasonable as-

sumption that the atmosphere is nonionized at ground level. It follows from Equa-
tion (6.120) that

kx = kx(z = 0) =
ω

c
S , (6.122)

where S is the sine of the angle of incidence of the pulse, with respect to the vertical
axis, at ground level. Equations (6.121) and (6.122) yield

kz = ±
ω

c

√
n2 − S 2. (6.123)

According to Equation (6.119), the plus sign corresponds to the upward trajectory of
the pulse, whereas the minus sign corresponds to the downward trajectory. Finally,
Equations (6.118), (6.119), (6.122), and (6.123) yield the equations of motion of the
pulse:

dx
dt

= c S , (6.124)

dz
dt

= ±c
√

n2 − S 2. (6.125)
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The pulse attains its maximum altitude, z = z0, when

n(z0) = |S |. (6.126)

The total distance traveled by the pulse (i.e., the distance from its launch point to the
point where it intersects the Earth’s surface again) is

x0 = 2 S
∫ z0(S )

0

dz√
n2(z) − S 2

. (6.127)

In the limit in which the radio pulse is launched vertically (i.e., S = 0) into the
ionosphere, the turning point condition (6.126) reduces to that characteristic of a
cutoff (i.e., n = 0). The WKB turning point described in Equation (6.126) is a gener-
alization of the conventional turning point, which occurs when k2 changes sign. Here,
k2

z changes sign, while k2
x and k2

y are constrained by symmetry (i.e., kx is constant,
and ky is zero).

According to Equations (6.115)–(6.117) and (6.121), the equation of motion of
the pulse can also be written

d2r
dt2 =

c2

2
∇n2. (6.128)

It follows that the trajectory of the pulse is the same as that of a particle moving
in the gravitational potential −c2 n2/2. Thus, if n2 decreases linearly with increasing
height above the ground [which is the case if N(z) increases linearly with z] then the
trajectory of the pulse is a parabola.

6.10 EXERCISES

1. The electric polarization, P, in a linear dielectric medium is related to the elec-
tric field-strength, E, according to

P = ε0 (n2 − 1) E,

where n is the refractive index. Any divergence of the polarization field is
associated with a bound charge density

ρ = −∇ · P,

whereas any time variation generates a polarization current whose density is

j =
∂P
∂t
.

Consider an electromagnetic wave propagating through a quasi-neutral, linear,
dielectric medium. Assuming a common exp(−iω t) time variation of the wave
fields, demonstrate from Maxwell’s equations that

∇ × c B = −i k0 n2 E,

∇ × E = i k0 c B,

where k0 = ω/c.
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2. Consider an electromagnetic wave, polarized in the y-direction, that propagates
in the z-direction through a medium of refractive index n(z). Assuming that

E = Ey(z) exp(−iω t) ey,

B = Bx(z) exp(−iω t) ex,

demonstrate that

d2Ey

dz2 + k2
0 n2 Ey = 0,

d (c Bx)
dz

+ i k0 n2 Ey = 0,

where k0 = ω/c.

3. Consider an electromagnetic wave, polarized in the y-direction, that propagates
in the x-z plane through a medium of refractive index n(z). Assuming that

E = Ey(z) e i (kx x−ω t) ey,

B = Bx(z) e i (kx x−ω t) ex + Bz(z) e i (kx x−ω t) ez,

demonstrate that

d2Ey

dz2 + k2
0 q2 Ey = 0,

d (c Bx)
dz

+ i k0 q2 Ey = 0,

where
q2 = n2 − S 2,

and S = kx/k0, and k0 = ω/c.

Show that the WKB solutions take the form

Ey(z) ' q−1/2 exp
(
±i k0

∫ z

0
q dz′

)
,

c Bx(z) ' ∓q1/2 exp
(
±i k0

∫ z

0
q dz′

)
,

and that the criterion for these solutions to be valid is

1
k2

0

∣∣∣∣∣∣∣34
(

1
q2

dq
dz

)2

−
1

2 q3

d2q
dz2

∣∣∣∣∣∣∣ � 1.



Waves in Inhomogeneous Plasmas � 157

4. Consider an electromagnetic wave, polarized in the x-z-plane, that propagates
in the x-z plane through a medium of refractive index n(z). Assuming that

E = Ex(z) e i (kx x−ω t) ex + Ez(z) e i (kx x−ω t) ez,

B = By(z) e i (kx x−ω t) ey,

demonstrate that

dEx

dz
− i k0

q2

n2 c By = 0,

d2(c By)
dz2 −

1
n2

dn2

dz
d (c By)

dz
+ k2

0 q2 c By = 0,

where
q2 = n2 − S 2,

and S = kx/k0, and k0 = ω/c.

Show that the WKB solutions take the form

c By(z) ' n q−1/2 exp
(
±i k0

∫ z

0
q dz′

)
,

Ex(z) ' ±n−1 q1/2 exp
(
±i k0

∫ z

0
q dz′

)
,

and that the criterion for these solutions to be valid is

1
k2

0

∣∣∣∣∣∣∣34
(

1
q2

dq
dz

)2

−
1

2 q3

d2q
dz2 +

1
q2

1
n

d2n
dz2 − 2

(
1
n

dn
dz

)2
∣∣∣∣∣∣∣ � 1.

5. An electromagnetic wave pulse of frequency ω is launched vertically from
ground level, travels upward into the ionosphere, is reflected, and returns to
ground level. If τ(ω) is the net travel time of the pulse then the so-called equiv-
alent height of reflection is defined h(ω) = c τ(ω)/2. It follows that h is the
altitude of the reflection layer calculated on the assumption that the pulse al-
ways travels at the velocity of light in vacuum. Let Πe(z) be the ionospheric
plasma frequency, where z measures altitude above the ground. Neglect colli-
sions and the Earth’s magnetic field.

(a) Demonstrate that

h(ω) =

∫ z0(ω)

0

ω[
ω2 − Π2

e (z)
]1/2 dz,

where Πe(z0) = ω.
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(b) Show that if z0(ω) is a monotonically increasing function of ω then the
previous integral can be inverted to give

z0(ω) =
2
π

∫ π/2

0
h(ω sinα) dα,

or, equivalently,

z(Πe) =
2
π

∫ π/2

0
h(Πe sinα) dα.

(Hint: This is a form of Abel inversion. See Budden 1985.)

(c) Demonstrate that if

h(ω) = h0 + δ

(
ω

Π0

)p

,

where h0, δ, and Π0 are positive constants, then Πe(z) = 0 for z < h0, and

Πe(z) =

[
πΓ(1 + p)

Γ(1/2 + p/2) Γ(1/2 + p/2)

]1/p
Π0

2

(
z − h0

δ

)1/p

for z ≥ h0. Here, Γ(z) is a gamma function (Abramowitz and Stegun
1965).

6. Suppose that the refractive index, n(z), of the ionosphere is given by n2 =

1 − α (z − h0) for z ≥ h0, and n2 = 1 for z < h0, where α and h0 are positive
constants, and the Earth’s magnetic field and curvature are both neglected.
Here, z measures altitude above the Earth’s surface.

(a) A point transmitter sends up a wave packet at an angle θ to the vertical.
Show that the packet returns to Earth a distance

x0 = 2 h0 tan θ +
2
α

sin 2θ

from the transmitter. Demonstrate that if α h0 < 1/4 then for some values
of x0 the previous equation is satisfied by three different values of θ. In
other words, wave packets can travel from the transmitter to the receiver
via one of three different paths. Show that the critical case α h0 = 1/4
corresponds to θ = π/3 and x0 = 6

√
3 h0.

(b) A point radio transmitter emits a pulse of radio waves uniformly in
all directions. Show that the pulse first returns to the Earth a distance
4 h0 (2/α h0 − 1)1/2 from the transmitter, provided that α h0 < 2.



C H A P T E R 7

Waves in Warm
Plasmas

7.1 INTRODUCTION

In this chapter, we shall investigate electromagnetic wave propagation through a
warm collisionless plasma, extending the discussion presented in Chapter 5 to take
thermal effects into account. It turns out that the thermal modifications to wave prop-
agation are not particularly well described by fluid equations. We shall, therefore,
adopt a kinetic description of the plasma. The appropriate governing kinetic equa-
tion is, of course, the Vlasov equation introduced in Section 4.1.

7.2 LANDAU DAMPING

Let us begin our study of the Vlasov equation by examining what appears, at first
sight, to be a fairly simple and straightforward problem: namely, the propagation of
small amplitude plasma waves through a uniform plasma possessing no equilibrium
magnetic field. For the sake of simplicity, we shall only consider electron motion,
assuming that the ions form an immobile, neutralizing background. The ions are also
assumed to be singly charged. We shall search for electrostatic plasma waves of the
type discussed in Section 5.7. Such waves are longitudinal in nature (i.e., E ∝ k),
and possess a perturbed electric field, but no perturbed magnetic field.

Our starting point is the Vlasov equation for an unmagnetized, collisionless
plasma:

∂ fe
∂t

+ v · ∇ fe −
e

me
E · ∇v fe = 0, (7.1)

where fe(r, v, t) is the ensemble-averaged electron distribution function. The electric
field satisfies

E = −∇Φ. (7.2)

where

∇2Φ = −
e
ε0

(
n −

∫
fe d3v

)
. (7.3)
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Here, n is the number density of ions (which is the same as the equilibrium number
density of electrons).

Because we are dealing with small amplitude waves, it is appropriate to linearize
the Vlasov equation. Suppose that the electron distribution function is written

fe(r, v, t) = f0(v) + f1(r, v, t). (7.4)

Here, f0 represents the equilibrium electron distribution, whereas f1 represents the
small perturbation due to the wave. Of course,

∫
f0 d3v = n, otherwise the equilib-

rium state would not be quasi-neutral. The electric field is assumed to be zero in the
unperturbed state, so that E(r, t) can be regarded as a small quantity. Thus, lineariza-
tion of Equations (7.1) and (7.3) yields

∂ f1
∂t

+ v · ∇ f1 −
e

me
E · ∇v f0 = 0, (7.5)

and
∇2Φ =

e
ε0

∫
f1 d3v, (7.6)

respectively.
Let us now follow the standard procedure for analyzing small amplitude waves,

by assuming that all perturbed quantities vary with r and t like exp[ i (k · r − ω t)].
Equations (7.5) and (7.6) reduce to

−i (ω − k · v) f1 + i
e

me
Φk · ∇v f0 = 0, (7.7)

and
−k2 Φ =

e
ε0

∫
f1 d3v, (7.8)

respectively. Solving the first of these equations for f1, and substituting into the inte-
gral in the second, we conclude that if Φ is nonzero then we must have

1 +
e2

ε0 me k2

∫
k · ∇v f0
ω − k · v

d3v = 0. (7.9)

We can interpret Equation (7.9) as the dispersion relation for electrostatic plasma
waves, relating the wavevector, k, to the frequency, ω. However, in doing so, we run
up against a serious problem, because the integral has a singularity in velocity space,
where ω = k · v, and is, therefore, not properly defined.

The way to resolve this problem was first explained by Landau in a very influen-
tial paper that was the foundation of much subsequent work on plasma oscillations
and instabilities (Landau 1946). Landau showed that, instead of simply assuming
that f1 varies in time as exp(−iω t), the problem must be regarded as an “initial value
problem” in which f1 is specified at t = 0, and calculated at later times. We may still
Fourier analyze with respect to r, so we write

f1(r, v, t) = f1(v, t) exp ( i k · r) . (7.10)
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It is helpful to define u as the velocity component along k (i.e., u = k · v/k), and to
also define F0(u) and F1(u, t) as the integrals of f0(v) and f1(v, t), respectively, over
the velocity components perpendicular to k. Thus, Equations (7.5) and (7.6) yield

∂F1

∂t
+ i k u F1 −

e
me

E
∂F0

∂u
= 0, (7.11)

and

i k E = −
e
ε0

∫ ∞

−∞

F1(u) du, (7.12)

respectively, where E = E k/k.
In order to solve Equations (7.11) and (7.12) as an initial value problem, we

introduce the Laplace transform of F1 with respect to t (Riley 1974):

F̄1(u, p) =

∫ ∞

0
F1(u, t) e−p t dt. (7.13)

If the rate of increase of F1 with increasing t is no faster than exponential then the
integral on the right-hand side of the previous equation converges, and defines F̄1 as
an analytic function of p, provided that the real part of p is sufficiently large.

Noting that the Laplace transform of ∂F1/∂t is p F̄1 − F1(u, t = 0) (as is easily
shown by integration by parts), we can Laplace transform Equations (7.11) and (7.12)
to obtain

p F̄1 + i k u F̄1 =
e

me
Ē
∂F0

∂u
+ F1(u, t = 0), (7.14)

and

i k Ē = −
e
ε0

∫ ∞

−∞

F̄1(u) du, (7.15)

respectively. The previous two equations can be combined to give

i k Ē = −
e
ε0

∫ ∞

−∞

[
e

me
Ē
∂F0/∂u
p + i k u

+
F1(u, t = 0)

p + i k u

]
du, (7.16)

yielding

Ē(p) = −
(e/ε0)

i k ε(k, p)

∫ ∞

−∞

F1(u, t = 0)
p + i k u

du, (7.17)

where

ε(k, p) = 1 +
e2

ε0 me k

∫ ∞

−∞

∂F0/∂u
i p − k u

du. (7.18)

The function ε(k, p) is known as the plasma dielectric function. Of course, if p is
replaced by −iω then the dielectric function becomes equivalent to the left-hand side
of Equation (7.9). However, because p possesses a positive real part, the integral on
the right-hand side of the previous equation is well-defined.

According to Equations (7.14) and (7.17), the Laplace transform of the distribu-
tion function is written

F̄1 =
e

me
Ē
∂F0/∂u
p + i k u

+
F1(u, t = 0)

p + i k u
, (7.19)
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Im
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→
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C

Figure 7.1 The Bromwich contour.

or

F̄1(u, p) = −
e2

ε0 me i k
∂F0/∂u

ε(k, p) (p + i k u)

∫ ∞

−∞

F1(u′, t = 0)
p + i k u′

du′ +
F1(u, t = 0)

p + i k u
. (7.20)

Having found the Laplace transforms of the electric field and the perturbed dis-
tribution function, we must now invert them to obtain E and F1 as functions of time.
The inverse Laplace transform of the distribution function is given by (Riley 1974)

F1(u, t) =
1

2π i

∫
C

F̄1(u, p) ep t dp, (7.21)

where C—the so-called Bromwich contour—is a contour running parallel to the
imaginary axis, and lying to the right of all singularities (otherwise known as poles)
of F̄1 in the complex-p plane. (See Figure 7.1.) There is an analogous expression for
the parallel electric field, E(t).

Rather than trying to obtain a general expression for F1(u, t), from Equations
(7.20) and (7.21), we shall concentrate on the behavior of the perturbed distribution
function at large times. Looking at Figure 7.1, we note that if F̄1(u, p) has only a finite
number of simple poles in the region Re(p) > −σ (where σ is real and positive) then
we may deform the contour as shown in Figure 7.2, with a loop around each of the
singularities. A pole at p0 gives a contribution that varies in time as ep0 t, whereas the
vertical part of the contour gives a contribution that varies as e−σ t. For sufficiently
large times, the latter contribution is negligible, and the behavior is dominated by
contributions from the poles furthest to the right.
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Figure 7.2 The distorted Bromwich contour.

Equations (7.17), (7.18), and (7.20) all involve integrals of the form∫ ∞

−∞

G(u)
u − i p/k

du. (7.22)

Such integrals become singular as p approaches the imaginary axis. In order to distort
the contour C, in the manner shown in Figure 7.2, we need to continue these integrals
smoothly across the imaginary p-axis. As a consequence of the way in which the
Laplace transform was originally defined—that is, for Re(p) sufficiently large—the
appropriate way to do this is to take the values of these integrals when p lies in the
right-hand half-plane, and to then find the analytic continuation into the left-hand
half-plane (Flanigan 2010).

If G(u) is sufficiently well-behaved that it can be continued off the real axis as
an analytic function of a complex variable u then the continuation of (7.22) as the
singularity crosses the real axis in the complex u-plane, from the upper to the lower
half-plane, is obtained by letting the singularity take the contour with it, as shown in
Figure 7.3 (Cairns 1985).

Note that the ability to deform the Bromwich contour into that of Figure 7.3, and
so to find a dominant contribution to E(t) and F1(u, t) from a few poles, depends on
F0(u) and F1(u, t = 0) having smooth enough velocity dependences that the inte-
grals appearing in Equations (7.17), (7.18), and (7.20) can be analytically continued
sufficiently far into the lower half of the complex u-plane (Cairns 1985).

If we consider the electric field given by the inversion of Equation (7.17) then we
see that its behavior at large times is dominated by the zero of ε(k, p) that lies furthest
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Re(u) →

Im
(u
)
→

i p/k

Figure 7.3 The Bromwich contour for Landau damping.

to the right in the complex p-plane. According to Equations (7.20) and (7.21), F1(u, t)
has a similar contribution, as well as a contribution that varies in time as e−i k u t. Thus,
for sufficiently long times after the initial excitation of the wave, the electric field
depends only on the positions of the roots of ε(k, p) = 0 in the complex p-plane. The
distribution function, on the other hand, has corresponding components from these
roots, as well as a component that varies in time as e−i k u t. At large times, the latter
component of the distribution function is a rapidly oscillating function of velocity,
and its contribution to the charge density, obtained by integrating over u, is negligible.

As we have already noted, the function ε(k, p) is equivalent to the left-hand side
of Equation (7.9), provided that p is replaced by −iω. Thus, the dispersion relation,
(7.9), obtained via Fourier transformation of the Vlasov equation, gives the correct
behavior at large times, as long as the singular integral is treated correctly. Adapt-
ing the procedure that we discovered using the complex variable p, we see that the
integral is defined as it is written for Im(ω) > 0, and analytically continued, by de-
forming the contour of integration in the u-plane (as shown in Figure 7.3), into the
region Im(ω) < 0. The simplest way to remember how to do the analytic continuation
is to observe that the integral is continued from the part of the ω-plane correspond-
ing to growing perturbations to that corresponding to damped perturbations. Once we
know this rule, we can obtain kinetic dispersion relations in a fairly direct manner,
via Fourier transformation of the Vlasov equation, and there is no need to attempt
the more complicated Laplace transform solution.

In Chapter 5, where we investigated the cold-plasma dispersion relation, we
found that for any given k there were a finite number of values of ω, say ω1, ω2,
· · · , and a general solution was a linear superposition of functions varying in time as
e−iω1 t, e−iω2 t, et cetera. The set of values of ω corresponding to a given value of k
is called the spectrum of the wave. It is clear that the cold-plasma equations yield a



Waves in Warm Plasmas � 165

discrete wave spectrum. On the other hand, in the kinetic problem, we obtain contri-
butions to the distribution function that vary in time as e−i k u t, with u taking any real
value. In other words, the kinetic equation yields a continuous wave spectrum. All of
the mathematical difficulties of the kinetic problem arise from the existence of this
continuous spectrum (Cairns 1985). At short times, the behavior is very complicated,
and depends on the details of the initial perturbation. It is only asymptotically that a
mode varying in time as e−iω t is obtained, with ω determined by a dispersion relation
that is solely a function of the unperturbed state. As we have seen, the emergence of
such a mode depends on the initial velocity disturbance being sufficiently smooth.

Suppose, for the sake of simplicity, that the background plasma state is a
Maxwellian distribution. Working in terms of ω, rather than p, the kinetic disper-
sion relation for electrostatic waves takes the form

ε(k, ω) = 1 +
e2

ε0 me k

∫ ∞

−∞

∂F0/∂u
ω − k u

du = 0, (7.23)

where

F0(u) =
n

(2πTe/me)1/2 exp
(
−

me u2

2 Te

)
. (7.24)

Suppose that, to a first approximation, ω is real. Letting ω tend to the real axis from
the domain Im(ω) > 0, we obtain∫ ∞

−∞

∂F0/∂u
ω − k u

du = P
∫ ∞

−∞

∂F0/∂u
ω − k u

du −
i π
k

(
∂F0

∂u

)
u=ω/k

, (7.25)

where P denotes the Cauchy principal part of the integral (Flanigan 2010). The ori-
gin of the two terms on the right-hand side of the previous equation is illustrated in
Figure 7.4. The first term—the principal part—is obtained by removing an interval
of length 2 ε, symmetrical about the pole, u = ω/k, from the range of integration, and
then letting ε → 0. The second term comes from the small semi-circle linking the
two halves of the principal part integral. Note that the semi-circle deviates below the
real u-axis, rather than above, because the integral is calculated by letting the pole
approach the axis from the upper half-plane in u-space.

Incidentally, because Equation (7.25) holds for any well-behaved distribution
function, it follows that

1
ω − k u

= P
1

ω − k u
− i π δ(ω − k u). (7.26)

This famous expression is known as the Plemelj formula (Plemelj 1908).
Suppose that k is sufficiently small thatω � k u over the range of u where ∂F0/∂u

is nonnegligible. It follows that we can expand the denominator of the principal part
integral in a Taylor series:

1
ω − k u

'
1
ω

(
1 +

k u
ω

+
k2 u2

ω2 +
k3 u3

ω3 + · · ·

)
. (7.27)
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Figure 7.4 Integration path about a pole.

Integrating the result term by term, and remembering that ∂F0/∂u is an odd function,
Equation (7.23) reduces to

1 −
Π2

e

ω2 − 3 k2 Te Π
2
e

me ω4 −
e2

ε0 me

i π
k2

(
∂F0

∂u

)
u=ω/k

' 0, (7.28)

where Πe = (n e2/ε0 me)1/2 is the electron plasma frequency. Equating the real part
of the previous expression to zero yields

ω2 ' Π2
e

[
1 + 3 (k λD)2

]
, (7.29)

where λD = (Te/me Π
2
e )1/2 is the Debye length, and it is assumed that k λD � 1. We

can regard the imaginary part of ω as a small perturbation, and write ω = ω0 + δω,
where ω0 is the root of Equation (7.29). It follows that

2ω0 δω ' ω
2
0

e2

ε0 me

i π
k2

(
∂F0

∂u

)
u=ω/k

, (7.30)

and so

δω '
i π
2

e2 ω0

ε0 me k2

(
∂F0

∂u

)
u=ω/k

, (7.31)

giving

δω ' −i
√
π

8
Πe

(k λD)3 exp
[
−

1
2 (k λD)2

]
. (7.32)

If we compare the previous results with those for a cold plasma, where the disper-
sion relation for an electrostatic plasma wave was found to be simply ω2 = Π2

e (see
Section 5.7), we see, first, that ω now depends on k, according to Equation (7.29),
so that, in a warm plasma, the electrostatic plasma wave is a propagating mode, with
a nonzero group-velocity. Such a mode is known as a Langmuir wave. Second, we
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now have an imaginary part to ω, given by Equation (7.32), corresponding, because
it is negative, to the damping of the wave in time. This damping is generally known
as Landau damping. If k λD � 1 (i.e., if the wavelength is much larger than the De-
bye length) then the imaginary part of ω is small compared to the real part, and the
wave is only lightly damped. However, as the wavelength becomes comparable to
the Debye length, the imaginary part of ω becomes comparable to the real part, and
the damping becomes strong. Admittedly, the approximate solution given previously
is not very accurate in the short wavelength case, but it is nevertheless sufficient to
indicate the existence of very strong damping.

There are no dissipative effects explicitly included in the collisionless Vlasov
equation. Thus, it can easily be verified that if the particle velocities are reversed at
any time then the solution up to that point is simply reversed in time. At first sight,
this reversible behavior does not seem to be consistent with the fact that an initial
perturbation dies out. However, we should note that it is only the electric field that
decays in time. The distribution function contains an undamped term varying in time
as e−i k u t. Furthermore, the decay of the electric field depends on there being a suffi-
ciently smooth initial perturbation in velocity space. The presence of the e−i k u t term
means that, as time advances, the velocity space dependence of the perturbation be-
comes more and more convoluted. It follows that if we reverse the velocities after
some time then we are not starting with a smooth distribution. Under these circum-
stances, there is no contradiction in the fact that, under time reversal, the electric
field grows initially, until the smooth initial state is recreated, and subsequently de-
cays away (Cairns 1985).

Landau damping was first observed experimentally in the 1960s (Malmberg and
Wharton 1964; Malmberg and Wharton 1966; Derfler and Simonen 1966).

7.3 PHYSICS OF LANDAU DAMPING

We have explained Landau damping in terms of mathematics. Let us now consider
the physical explanation for this effect (Cairns 1985). The motion of a charged par-
ticle situated in a one-dimensional electric field varying as E0 exp[ i (k x − ω t)] is
determined by

d2x
dt2 =

e
m

E0 e i (k x−ω t). (7.33)

Because we are dealing with a linearized theory in which the perturbation due to
the wave is small, it follows that if the particle starts with velocity u0 at position x0
then we may substitute x0 + u0 t for x in the electric field term. This is actually the
position of the particle on its unperturbed trajectory, starting at x = x0 at t = 0. Thus,
we obtain

du
dt

=
e
m

E0 e i (k x0+k u0 t−ω t), (7.34)

which yields

u − u0 =
e
m

E0

[
e i (k x0+k u0 t−ω t) − e i k x0

i (k u0 − ω)

]
. (7.35)
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As k u0 − ω→ 0, the previous expression reduces to

u − u0 =
e
m

E0 t e i k x0 , (7.36)

showing that particles with u0 close to ω/k—that is, with velocity components along
the x-axis close to the phase-velocity of the wave—have velocity perturbations that
grow in time. These so-called resonant particles gain energy from, or lose energy to,
the wave, and are responsible for the damping. This explains why the damping rate,
given by Equation (7.31), depends on the slope of the distribution function calculated
at u = ω/k. The remainder of the particles are nonresonant, and have an oscillatory
response to the wave field.

To understand why energy should be transferred from the electric field to the
resonant particles requires more detailed consideration (Cairns 1985). Whether the
speed of a resonant particle increases or decreases depends on the phase of the wave
at its initial position, and it is not the case that all particles moving slightly faster than
the wave lose energy, while all particles moving slightly slower than the wave gain
energy. Furthermore, the density perturbation oscillates out of phase with the wave
electric field, so there is no initial wave generated excess of particles gaining or losing
energy. However, if we consider those particles that start off with velocities slightly
above the phase-velocity of the wave then if they gain energy they move away from
the resonant velocity whereas if they lose energy they approach the resonant velocity.
The result is that the particles which lose energy interact more effectively with the
wave, and, on average, there is a transfer of energy from these particles to the electric
field. Exactly the opposite is true for particles with initial velocities lying just below
the phase-velocity of the wave. In the case of a Maxwellian distribution, there are
more particles in the latter class than in the former, so there is a net transfer of energy
from the electric field to the particles: that is, the electric field is damped. In the limit
that the wave amplitude tends to zero, it is clear that the damping rate is determined
by velocity gradient of the distribution function at the wave speed.

The previous argument fails if the magnitude of the initial electric field becomes
too large, because nonlinear effects become important (Cairns 1985). The basic re-
quirement for the validity of the linear result is that a resonant particle should main-
tain its position relative to the phase of the electric field over a sufficiently long time
period for the damping to take place. To determine the condition that this be the case,
let us consider the problem in the frame of reference in which the wave is at rest, and
the potential −eΦ seen by an electron is as sketched in Figure 7.5.

If the electron starts at rest (i.e., in resonance with the wave) at x0 then it begins to
move toward the potential minimum, as shown. The time for the electron to shift its
position relative to the wave may be estimated as the period with which it bounces
back and forth in the potential well. Near the bottom of the well, the equation of
motion of the electron is written

d2x
dt2 = −

e
me

k2 xΦ0, (7.37)

where k is the wavenumber, andΦ0 is the amplitude of the potential. Thus, the bounce
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Figure 7.5 Wave-particle interaction.

time is

τb ∼ 2π
√

me

e k2 Φ0
= 2π

√
me

e k E0
, (7.38)

where E0 is the amplitude of the electric field. We may expect the wave to damp
according to linear theory if the bounce time, τb, is much greater than the damping
time. Because the former time varies inversely with the square root of the electric
field amplitude, whereas the latter is amplitude independent, this criterion gives us an
estimate of the maximum allowable initial electric field amplitude that is consistent
with linear damping (Cairns 1985).

If the initial amplitude is large enough for the resonant electrons to bounce back
and forth in the potential well a number of times before the wave is damped then
it can be demonstrated that the result to be expected is a nonmonotonic decrease in
the amplitude of the electric field, as shown in Figure 7.6 (O’Neil 1965; Armstrong
1967). The period of the amplitude oscillations is similar to the bounce time, τb.

7.4 PLASMA DISPERSION FUNCTION

If the unperturbed distribution function, F0, appearing in Equation (7.23), is a Max-
wellian then it is readily seen that, with a suitable scaling of the variables, the disper-
sion relation for electrostatic plasma waves can be expressed in terms of the function

Z(ζ) = π−1/2
∫ ∞

−∞

e−t2

t − ζ
dt, (7.39)

which is defined as it is written for Im(ζ) > 0, and is analytically continued for
Im(ζ) ≤ 0. This function is known as the plasma dispersion function, and very often
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Figure 7.6 Nonlinear Landau damping.

crops up in problems involving small-amplitude waves propagating through warm
plasmas. Incidentally, Z(ζ) is the Hilbert transform of a Gaussian function.

In view of the importance of the plasma dispersion function, and its regular ap-
pearance in the literature of plasma physics, it is convenient to briefly examine its
main properties. We, first of all, note that if we differentiate Z(ζ) with respect to ζ
then we obtain

Z′(ζ) = π−1/2
∫ ∞

−∞

e−t2

(t − ζ)2 dt, (7.40)

which yields, on integration by parts,

Z′(ζ) = −π−1/2
∫ ∞

−∞

2 t
t − ζ

e−t2
dt = −2 (1 + ζ Z). (7.41)

If we let ζ tend to zero from the upper half of the complex plane, then we get

Z(0) = π−1/2 P
∫ ∞

−∞

e−t2

t
dt + i π1/2 = i π1/2. (7.42)

Of course, the principal part integral is zero because its integrand is an odd function
of t.

Integrating the linear differential equation (7.41), which possesses an integrating
factor exp(ζ2), and using the boundary condition (7.42), we obtain an alternative
expression for the plasma dispersion function:

Z(ζ) = e−ζ
2
(
i π1/2 − 2

∫ ζ

0
ex2

dx
)
. (7.43)
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Making the substitution t = i x in the integral, and noting that∫ 0

−∞

e−t2
dt =

π1/2

2
, (7.44)

we finally arrive at the expression

Z(ζ) = 2 i e−ζ
2
∫ i ζ

−∞

e−t2
dt = i π1/2 e−ζ

2 [
1 + erf(i ζ)

]
. (7.45)

This formula, which relates the plasma dispersion function to an error function of
imaginary argument (Abramowitz and Stegun 1965), is valid for all values of ζ.

For small ζ, we have the expansion (Richardson 2019)

Z(ζ) = i π1/2 e−ζ
2
− 2 ζ

[
1 −

2 ζ2

3
+

4 ζ4

15
−

8 ζ6

105
+ O(ζ8)

]
. (7.46)

For large ζ, where ζ = x+ i y, the asymptotic expansion for x > 0 is written (Richard-
son 2019)

Z(ζ) = i π1/2 σ e−ζ
2
− ζ−1

[
1 +

1
2 ζ2 +

3
4 ζ4 +

15
8 ζ6 + O(ζ−8)

]
. (7.47)

Here,

σ =


0 y > 1/|x|
1 |y| < 1/|x|
2 y < −1/|x|

. (7.48)

In deriving our previous expression (7.32) for the Landau damping rate, we, in effect,
used the first few terms of the asymptotic expansion (7.47).

The properties of the plasma dispersion function are specified in exhaustive detail
in a well-known book by Fried and Conte (Fried and Conte 1961).

7.5 ION ACOUSTIC WAVES

If we now take ion dynamics into account then the dispersion relation (7.23), for
electrostatic plasma waves, generalizes to

ε(k, ω) = 1 +
e2

ε0 me k

∫ ∞

−∞

∂F0 e/∂u
ω − k u

du +
e2

ε0 mi k

∫ ∞

−∞

∂F0 i/∂u
ω − k u

du = 0 : (7.49)

that is, we simply add an extra term for the ions that has an analogous form to the
electron term. Let us search for a wave with a phase-velocity, ω/k, that is much
less than the electron thermal velocity, but much greater than the ion thermal ve-
locity. We may assume that ω � k u for the ion term, as we did previously for the
electron term. It follows that, to lowest order, this term reduces to −Π2

i /ω
2, where

Πi = (n e2/ε0 mi)1/2. Conversely, we may assume that ω � k u for the electron term.
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Thus, to lowest order, we may neglect ω in the velocity space integral. Assuming F0 e

to be a Maxwellian with temperature Te, the electron term reduces to

Π2
e

k2

me

Te
=

1
(k λD)2 , (7.50)

where Πe = (n e2/ε0 me)1/2, and λD = (Te/me Π
2
e )1/2.

Thus, to a first approximation, the dispersion relation (7.49) can be written

1 +
1

(k λD)2 −
Π2

i

ω2 = 0, (7.51)

giving

ω2 = Π2
i

(k λD)2

1 + (k λD)2 =
Te

mi

k2

1 + (k λD)2 . (7.52)

For k λD � 1, we have ω = (Te/mi)1/2 k, a dispersion relation which is like that of
an ordinary sound wave, with the pressure provided by the electrons, and the inertia
by the ions. However, as the wavelength is reduced toward the Debye length, the
frequency levels off and approaches the ion plasma frequency.

Let us check our original assumptions. In the long wavelength limit, we see that
the wave phase-velocity, (Te/mi)1/2, is indeed much less than the electron thermal
velocity [by a factor (me/mi)1/2], but that it is only much greater than the ion thermal
velocity if the ion temperature, Ti, is much less than the electron temperature, Te.
In fact, if Ti � Te then the wave phase-velocity can simultaneously lie on almost
flat portions of the ion and electron distribution functions, as shown in Figure 7.7,
implying that the wave is subject to very little Landau damping. Indeed, Te must
generally be at least five to ten times greater than Ti before an ion acoustic wave can
propagate a distance of a few wavelengths without being strongly damped (Cairns
1985).

Of course, it is possible to obtain the ion acoustic wave dispersion relation,
ω2/k2 = Te/mi, using fluid theory. The kinetic theory used here is an improvement
on the fluid theory to the extent that no equation of state is assumed, and also that
the former theory makes it clear to us that ion acoustic waves are subject to strong
Landau damping (i.e., they cannot be considered normal modes of the plasma) unless
Te � Ti.

7.6 WAVES IN MAGNETIZED PLASMAS

Consider small amplitude waves propagating through a plasma placed in a uniform
magnetic field, B0 ≡ B0 ez. Let us take the perturbed magnetic field into account in
our calculations, in order to allow for electromagnetic, as well as electrostatic, waves.
The linearized Vlasov equation takes the form

∂ f1
∂t

+ v · ∇ f1 +
e
m

(v × B0) · ∇v f1 = −
e
m

(E + v × B) · ∇v f0 (7.53)
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Figure 7.7 Ion and electron distribution functions with Ti � Te.

for both ions and electrons, where E and B are the perturbed electric and magnetic
fields, respectively. Likewise, f1 is the perturbed distribution function, and f0 the
equilibrium distribution function.

In order to have an equilibrium state at all, we require that

(v × B0) · ∇v f0 = 0. (7.54)

Writing the velocity, v, in cylindrical polar coordinates, (v⊥, θ, v‖), aligned with the
equilibrium magnetic field, the previous expression can easily be shown to imply that
∂ f0/∂θ = 0: that is, f0 is a function only of v⊥ and v‖.

Let the trajectory of a particle be r(t), v(t). In the unperturbed state,

dr
dt

= v, (7.55)

dv
dt

=
e
m

(v × B0). (7.56)

It follows that Equation (7.53) can be written

D f1
Dt

= −
e
m

(E + v × B) · ∇v f0, (7.57)

where D f1/Dt is the total rate of change of f1, following the unperturbed trajectories.
Under the assumption that f1 vanishes as t → −∞, the solution to Equation (7.57)
can be written

f1(r, v, t) = −
e
m

∫ t

−∞

[
E(r′, t′) + v′ × B(r′, t′)

]
· ∇v f0(v′) dt′, (7.58)
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where (r′, v′) is the unperturbed trajectory that passes through the point (r, v) when
t′ = t.

It should be noted that the previous method of solution is valid for any set of
equilibrium electromagnetic fields, not just a uniform magnetic field. However, in
a uniform magnetic field, the unperturbed trajectories are merely helices, whereas
in a general field configuration it is difficult to find a closed form for the particle
trajectories that is sufficiently simple to allow further progress to be made.

Let us write the velocity in terms of its Cartesian components:

v =
(
v⊥ cos θ, v⊥ sin θ, v‖

)
. (7.59)

It follows that

v′ =
(
v⊥ cos

[
Ω (t − t′) + θ

]
, v⊥ sin

[
Ω (t − t′) + θ

]
, v‖

)
, (7.60)

where Ω = e B0/m is the gyofrequency. The previous expression can be integrated in
time to give

x′ − x = −
v⊥
Ω

(
sin

[
Ω (t − t′) + θ

]
− sin θ

)
, (7.61)

y′ − y =
v⊥
Ω

(
cos

[
Ω (t − t′) + θ

]
− cos θ

)
, (7.62)

z′ − z = v‖ (t′ − t). (7.63)

Note that both v⊥ and v‖ are constants of the motion. This implies that f0(v′) = f0(v),
because f0 is only a function of v⊥ and v‖. Given that v⊥ = (v′2x + v′2y )1/2, we can write

∂ f0
∂v′x

=
∂v⊥
∂v′x

∂ f0
∂v⊥

=
v′x
v⊥

∂ f0
∂v⊥

= cos
[
Ω (t′ − t) + θ

] ∂ f0
∂v⊥

, (7.64)

∂ f0
∂v′y

=
∂v⊥
∂v′y

∂ f0
∂v⊥

=
v′y

v⊥

∂ f0
∂v⊥

= sin
[
Ω (t′ − t) + θ

] ∂ f0
∂v⊥

, (7.65)

∂ f0
∂v′z

=
∂ f0
∂v‖

. (7.66)

Let us assume an exp[ i (k · r − ω t)] dependence of all perturbed quantities, with
k lying in the x-z plane. Equation (7.58) yields

f1 = −
e
m

∫ t

−∞

[
(Ex + v′y Bz − v

′
z By)

∂ f0
∂v′x

+ (Ey + v′z Bx − v
′
x Bz)

∂ f0
∂v′y

+(Ez + v′x By − v′y Bx)
∂ f0
∂v′z

]
exp

[
i {k · (r′ − r) − ω (t′ − t)}

]
dt′. (7.67)

Making use of Equations (7.60)–(7.66), as well as the identity (Abramowitz and
Stegun 1965)

e i a sin x ≡
∑

n=−∞,∞

Jn(a) e i n x, (7.68)
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where the Jn are Bessel functions (Abramowitz and Stegun 1965), Equation (7.67)
gives

f1 = −
e
m

∫ t

−∞

[
(Ex − v‖ By) cos χ

∂ f0
∂v⊥

+ (Ey + v‖ Bx) sin χ
∂ f0
∂v⊥

+(Ez + v⊥ By cos χ − v⊥ Bx sin χ)
∂ f0
∂v‖

] ∑
n,m=−∞,∞

Jn

(
k⊥ v⊥
Ω

)
Jm

(
k⊥ v⊥
Ω

)
× exp

{
i
[
(nΩ + k‖ v‖ − ω) (t′ − t) + (m − n) θ

] }
dt′, (7.69)

where
χ = Ω (t − t′) + θ. (7.70)

Maxwell’s equations yield

k × E = ωB, (7.71)

k × B = −i µ0 j −
ω

c2 E = −
ω

c2 K · E, (7.72)

where j is the perturbed current, and K is the dielectric permittivity tensor introduced
in Section 5.2. It follows that

K · E = E +
i

ω ε0
j = E +

i
ω ε0

∑
s

es

∫
v f1 s d3v, (7.73)

where f1 s is the species-s perturbed distribution function.
After a great deal of rather tedious analysis, Equations (7.69) and (7.73) reduce

to the following expression for the dielectric permittivity tensor (Harris 1970: Cairns
1985):

Kαβ = δαβ +
∑

s

e2
s

ω2 ε0 ms

∑
n=−∞,∞

∫
S αβ

ω − k‖ v‖ − nΩs
d3v, (7.74)

where

S αβ =


v⊥ (n Jn/as)2 U, i v⊥ (n/as) Jn J′n U, v⊥ (n/as) J2

n W
−i v⊥ (n/as) Jn J′n U, v⊥ J′2n U, −i v⊥ Jn J′n W
v‖ (n/as) J2

n U, i v‖ Jn J′n U, v‖ J2
n W

 , (7.75)

and

U = (ω − k‖ v‖)
∂ f0 s

∂v⊥
+ k‖ v⊥

∂ f0 s

∂v‖
, (7.76)

W =
nΩs v‖

v⊥

∂ f0 s

∂v⊥
+ (ω − nΩs)

∂ f0 s

∂v‖
, (7.77)

as =
k⊥ v⊥
Ωs

. (7.78)



176 � Plasma Physics: An Introduction (2nd Edition)

The argument of the Bessel functions is as. In the previous formulae, ′ denotes dif-
ferentiation with respect to argument, and Ωs = es B0/ms.

The warm-plasma dielectric tensor, (7.74), can be used to investigate the prop-
erties of waves in just the same manner as the cold-plasma dielectric tensor, (5.37),
was employed in Chapter 5. Note that our expression for the dielectric tensor in-
volves singular integrals of a type similar to those encountered in Section 7.2. In
principle, this means that we ought to treat the problem as an initial value problem.
Fortunately, we can use the insights gained in our investigation of the simpler un-
magnetized electrostatic wave problem to recognize that the appropriate way to treat
the singular integrals is to evaluate them as written for Im(ω) > 0, and by analytic
continuation for Im(ω) ≤ 0.

For Maxwellian distribution functions, of the form

f0 s =
ns

(2πTs/ms)3/2 exp

−ms (v2
⊥ + v2

‖
)

2 Ts

 , (7.79)

we can explicitly perform the velocity-space integral in Equation (7.74), making use
of the identities (Watson 1995)∫ ∞

0
x J2

n(s x) e−x2
dx =

1
2

e−s2/2 In(s2/2), (7.80)∫ ∞

0
x3 [

J′n(s x)
]2 e−x2

dx =
1
4

e−s2/2
[
2 n2 In(s2/2)/s2 + s2 In(s2/2) − s2 I′n(s2/2)

]
,

(7.81)

where In is a modified Bessel function (Abramowitz and Stegun 1965). We obtain

Kαβ = δαβ +
∑

s

Π2
s

ω

e−λs

k‖ vs

∑
n=−∞,∞

Tαβ, (7.82)

where Πs = (ns e2
s/ε0 ms)1/2, vs = (2 Ts/ms)1/2, and (Harris 1970; Cairns 1985)

Tαβ =


n2 In Z/λs, i n (I′n − In) Z, −n In Z′/(2 λs)1/2

−i n (I′n − In) Z, (n2 In/λs + 2 λs In − 2 λs I′n) Z, i λ1/2
s (I′n − In) Z′/21/2

−n In Z′/(2 λs)1/2, −i λ1/2
s (I′n − In) Z′/21/2, −In Z′ ξn

 .
(7.83)

Here, λs, which is the argument of the modified Bessel functions, is written

λs =
k2
⊥ v

2
s

2Ω2
s
, (7.84)

whereas Z and Z′ represent the plasma dispersion function and its derivative, both
functions being evaluated with the argument

ξn =
ω − nΩs

k‖ vs
. (7.85)
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Let us consider the cold-plasma limit, vs → 0. It follows from Equations (7.84)
and (7.85) that this limit corresponds to λs → 0 and ξn → ∞. According to Equa-
tion (7.47),

Z(ξn)→ −
1
ξn
, (7.86)

Z′(ξn)→
1
ξ2

n
(7.87)

as ξn → ∞. Moreover, (Abramowitz and Stegun 1965)

In(λs)→
(
λs

2

)|n|
(7.88)

as λs → 0. It can be demonstrated that the only nonzero contributions to Kαβ, in this
limit, come from n = 0 and n = ±1. In fact,

K11 = K22 = 1 −
1
2

∑
s

Π2
s

ω2

(
ω

ω − Ωs
+

ω

ω + Ωs

)
, (7.89)

K12 = −K21 = −
i
2

∑
s

Π2
s

ω2

(
ω

ω − Ωs
−

ω

ω + Ωs

)
, (7.90)

K33 = 1 −
∑

s

Π2
s

ω2 , (7.91)

and K13 = K31 = K23 = K32 = 0. It is easily seen, from Section 5.3, that the previous
expressions are identical to those found using the cold-plasma fluid equations. Thus,
in the zero temperature limit, the kinetic dispersion relation obtained in this section
reverts to the fluid dispersion relation derived in Chapter 5.

7.7 PARALLEL WAVE PROPAGATION

Let us consider wave propagation, though a warm plasma, parallel to the equilibrium
magnetic field. For parallel propagation, k⊥ → 0, and, hence, from Equation (7.84),
λs → 0. Making use of Equation (7.88), the matrix Tαβ simplifies to

Tαβ =


[Z(ξ1) + Z(ξ−1)]/2, i [Z(ξ1) − Z(ξ−1)]/2, 0
−i [Z(ξ1) − Z(ξ−1)]/2, [Z(ξ1) + Z(ξ−1)]/2, 0

0, 0, −Z′(ξ0) ξ0

 , (7.92)

where, again, the only nonzero contributions are from n = 0 and n = ±1. The disper-
sion relation can be written [see Equations (5.9) and (5.10)]

M · E ≡
( c
ω

)2
kk −

(
c k
ω

)2

I + K
 · E = 0, (7.93)
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where

M11 = M22 = 1 −
k2
‖

c2

ω2 +
1
2

∑
s

Π2
s

ω k‖ vs

[
Z

(
ω − Ωs

k‖ vs

)
+ Z

(
ω + Ωs

k‖ vs

)]
, (7.94)

M12 = −M21 =
i
2

∑
s

Π2
s

ω k‖ vs

[
Z

(
ω − Ωs

k‖ vs

)
− Z

(
ω + Ωs

k‖ vs

)]
, (7.95)

M33 = 1 −
∑

s

Π2
s

(k‖ vs)2 Z′
(
ω

k‖ vs

)
, (7.96)

and M13 = M31 = M23 = M32 = 0.
The first root of Equation (7.93) is

1 +
∑

s

2Π2
s

(k‖ vs)2

[
1 +

ω

k‖ vs
Z

(
ω

k‖ vs

)]
= 0, (7.97)

with the eigenvector (0, 0, Ez). Here, use has been made of Equation (7.41). This root
evidentially corresponds to a longitudinal, electrostatic plasma wave. In fact, it is eas-
ily demonstrated that Equation (7.97) is equivalent to the dispersion relation (7.49)
that we found earlier for electrostatic plasma waves, for the special case in which
the distribution functions are Maxwellians. The analysis of Section 7.4 implies that
the electrostatic wave described by the previous expression is subject to significant
damping whenever the argument of the plasma dispersion function becomes less than
or comparable with unity: that is, whenever ω . k‖ vs.

The second and third roots of Equation (7.93) are

k2
‖

c2

ω2 = 1 +
∑

s

Π2
s

ω k‖ vs
Z

(
ω + Ωs

k‖ vs

)
, (7.98)

with the eigenvector (Ex, i Ex, 0), and

k2
‖

c2

ω2 = 1 +
∑

s

Π2
s

ω k‖ vs
Z

(
ω − Ωs

k‖ vs

)
, (7.99)

with the eigenvector (Ex, −i Ex, 0). The former root evidently corresponds to a right-
handed circularly polarized wave, whereas the latter root corresponds to a left-handed
circularly polarized wave. The previous two dispersion relations are essentially the
same as the corresponding fluid dispersion relations, (5.90) and (5.91), except that
they explicitly contain collisionless damping at the cyclotron resonances. Roughly
speaking, the damping is significant whenever the arguments of the plasma disper-
sion functions are less than or of order unity. This corresponds to

ω − |Ωe| . k‖ ve (7.100)

for the right-handed wave, and

ω − Ωi . k‖ vi (7.101)

for the left-handed wave.
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The collisionless cyclotron damping mechanism is similar to the Landau damp-
ing mechanism for longitudinal waves discussed in Section 7.3. In the former case,
the resonant particles are those that gyrate about the magnetic field at approximately
the same angular frequency as the wave electric field. Note that, in kinetic theory,
the cyclotron resonances possess a finite width in frequency space (i.e., the incident
wave does not have to oscillate at exactly the cyclotron frequency in order for there
to be an absorption of wave energy by the plasma), unlike in the cold plasma model,
where the resonances possess zero width.

7.8 PERPENDICULAR WAVE PROPAGATION

Let us now consider wave propagation, through a warm plasma, perpendicular to
the equilibrium magnetic field. For perpendicular propagation, k‖ → 0, and, hence,
from Equation (7.85), ξn → ∞. Making use of the asymptotic expansions (7.86) and
(7.87), the matrix Tαβ simplifies considerably. The dispersion relation can again be
written in the form (7.93), where

M11 = 1 −
∑

s

Π2
s

ω

e−λs

λs

∑
n=−∞,∞

n2 In(λs)
ω − nΩs

, (7.102)

M12 = −M21 = −i
∑

s

Π2
s

ω
e−λs

∑
n=−∞,∞

n
[
I′n(λs) − In(λs)

]
ω − nΩs

, (7.103)

M22 = 1 −
k2
⊥ c2

ω2

∑
s

Π2
s

ω

e−λs

λs

∑
n=−∞,∞

n2 In(λs) + 2 λ2
s In(λs) − 2 λ2

s I′n(λs)
ω − nΩs

, (7.104)

M33 = 1 −
k2
⊥ c2

ω2 −
∑

s

Π2
s

ω
e−λs

∑
n=−∞,∞

In(λs)
ω − nΩs

, (7.105)

and M13 = M31 = M23 = M32 = 0. Here,

λs =
(k⊥ ρs)2

2
, (7.106)

where ρs = vs/|Ωs| is the species-s gyroradius.
The first root of the dispersion relation (7.93) is

n2
⊥ =

k2
⊥ c2

ω2 = 1 −
∑

s

Π2
s

ω
e−λs

∑
n=−∞,∞

In(λs)
ω − nΩs

, (7.107)

with the eigenvector (0, 0, Ez). This dispersion relation obviously corresponds to the
electromagnetic plasma wave, or ordinary mode, discussed in Section 5.10. However,
in a warm plasma, the dispersion relation for the ordinary mode is strongly modified
by the introduction of resonances (where the refractive index, n⊥, becomes infinite)
at all the harmonics of the cyclotron frequencies:

ωn s = nΩs, (7.108)
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where n is a nonzero integer. These resonances are a finite gyroradius effect. In fact,
they originate from the variation of the wave phase across a gyro-orbit (Cairns 1985).
Thus, in the cold plasma limit, λs → 0, in which the gyroradii shrink to zero, all
of the resonances disappear from the dispersion relation. In the limit in which the
wavelength, λ, of the wave is much larger than a typical gyroradius, ρs, the relative
amplitude of the nth harmonic cyclotron resonance, as it appears in the dispersion
relation (7.107), is approximately (ρs/λ)|n| [see Equations (7.88) and (7.106)]. It is
clear, therefore, that, in this limit, only low-order resonances [i.e., n ∼ O(1)] cou-
ple strongly into the dispersion relation, and high-order resonances (i.e., |n| � 1)
can effectively be neglected. As λ → ρs, the high-order resonances become increas-
ingly important, until, when λ . ρs, all of the resonances are of approximately equal
strength. Because the ion gyroradius is generally much larger than the electron gy-
roradius, it follows that the ion cyclotron harmonic resonances are generally more
important than the electron cyclotron harmonic resonances.

Observe that the cyclotron harmonic resonances appearing in the dispersion rela-
tion (7.107) are of zero width in frequency space: that is, they are just like the reso-
nances that appear in the cold-plasma limit. Actually, this is just an artifact of the fact
that the waves we are studying propagate exactly perpendicular to the equilibrium
magnetic field. It is clear, from an examination of Equations (7.83) and (7.85), that
the cyclotron harmonic resonances originate from the zeros of the plasma dispersion
functions. Adopting the usual rule that substantial damping takes place whenever the
arguments of the dispersion functions are less than or of order unity, it follows that
the cyclotron harmonic resonances lead to significant damping whenever

ω − ωn s . k‖ vs. (7.109)

Thus, the cyclotron harmonic resonances possess a finite width in frequency space
provided the parallel wavenumber, k‖, is nonzero: that is, provided the wave does not
propagate exactly perpendicular to the magnetic field.

The appearance of the cyclotron harmonic resonances in a warm plasma is of
great practical importance in plasma physics, because it greatly increases the number
of resonant frequencies at which waves can transfer energy to the plasma. In mag-
netic fusion experiments, these resonances are routinely exploited to heat plasmas
via externally launched electromagnetic waves (Stix 1992; Swanson 2003).

The other roots of the dispersion relation (7.93) satisfy1 −∑
s

Π2
s

ω

e−λs

λs

∑
n=−∞,∞

n2 In(λs)
ω − nΩs

 (1 − k2
⊥ c2

ω2

−
∑

s

Π2
s

ω

e−λs

λs

∑
n=−∞,∞

n2 In(λs) + 2 λ2
s In(λs) − 2 λ2

s I′n(λs)
ω − nΩs


=

∑
s

Π2
s

ω
e−λs

∑
n=−∞,∞

n
[
I′n(λs) − In(λs)

]
ω − nΩs

2

, (7.110)

with the eigenvector (Ex, Ey, 0). In the cold plasma limit, λs → 0, this dispersion
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Figure 7.8 Dispersion relation for electron Bernstein waves in a warm plasma for
which ωUH/|Ωe| = 2.5.

relation reduces to that of the extraordinary mode discussed in Section 5.10. This
mode, for which λs � 1, unless the plasma possesses a thermal velocity approaching
the velocity of light, is little affected by thermal effects, except close to the cyclotron
harmonic resonances, ω = ωn s, where small thermal corrections are important be-
cause of the smallness of the denominators in the previous dispersion relation (Cairns
1985).

However, another mode also exists. In fact, if we look for a mode with a phase-
velocity much less than the velocity of light (i.e., c2 k2

⊥/ω
2 � 1) then it is clear from

(7.102)–(7.105) that the dispersion relation is approximately

1 −
∑

s

Π2
s

ω

e−λs

λs

∑
n=−∞,∞

n2 In(λs)
ω − nΩs

= 0, (7.111)

and the associated eigenvector is (Ex, 0, 0). The new waves, which are called Bern-
stein waves—after I.B. Bernstein, who first discovered them (Bernstein 1958)—are
a type of slowly propagating, longitudinal, electrostatic wave.

Let us consider electron Bernstein waves, for the sake of definiteness. Neglecting
the contribution of the ions, which is reasonable provided that the wave frequencies
are sufficiently high, the dispersion relation (7.111) reduces to

1 −
Π2

e

ω

e−λe

λe

∑
n=−∞,∞

n2 In(λe)
ω − nΩe

= 0. (7.112)
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Figure 7.9 Dispersion relation for extraordinary/electron Bernstein waves in a warm
plasma for which ωUH/|Ωe| = 2.5 and vt e/c = 0.2. The dashed line indicates the cold
plasma extraordinary mode.

In the limit λe → 0 (with ω , nΩe), only the n = ±1 terms survive in the previous
expression. [See Equation (7.88).] In fact, because I±1(λe)/λe → 1/2 as λe → 0, the
dispersion relation yields

ω2 → Π2
e + Ω2

e . (7.113)

It follows that there is a Bernstein wave whose frequency asymptotes to the upper
hybrid frequency (see Section 5.10) in the limit k⊥ → 0. For other nonzero values
of n, we have In(λe)/λe → 0 as λe → 0. However, a solution to Equation (7.111)
can be obtained if ω → nΩe at the same time. Similarly, as λe → ∞, we have
e−λe In(λe) → 0 (Abramowitz and Stegun 1965). In this case, a solution can only
be obtained if ω → nΩe, for some n, at the same time. The complete solution to
Equation (7.111) is plotted in Figure 7.8 for a case where the upper hybrid frequency
lies between 2 |Ωe| and 3 |Ωe|. In fact, wherever the upper hybrid frequency lies, the
Bernstein modes above and below it behave like those shown in the diagram.

At small values of k⊥, the phase-velocity becomes large, and it is no longer legit-
imate to neglect the extraordinary mode (Cairns 1985). A more detailed examination
of the complete dispersion relation shows that the extraordinary mode and the Bern-
stein mode cross over near the harmonics of the cyclotron frequency to give the pat-
tern shown in Figure 7.9. Here, the dashed line shows the cold plasma extraordinary
mode.
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In a lower frequency range, a similar phenomena occurs at the harmonics of
the ion cyclotron frequency, producing ion Bernstein waves, with somewhat similar
properties to electron Bernstein waves. Note, however, that while the ion contribution
to the dispersion relation can be neglected for high-frequency waves, the electron
contribution cannot be neglected for low-frequency waves, so there is not a complete
symmetry between the two types of Bernstein waves.

7.9 ELECTROSTATIC WAVES

It is instructive to consider the propagation of electrostatic waves through a magne-
tized plasma. Such waves have purely electrostatic perturbed electric fields of the
form

E = −∇Φ = −iΦk. (7.114)

Equation (7.8) can be generalized to give

k2 Φ =
∑

s

es

ε0

∫
f1 s d3v. (7.115)

Moreover, it follows from Equation (7.71) that

B = ω−1 k × E = 0. (7.116)

In other words, there is no perturbed magnetic field associated with an electrostatic
wave. Equation (7.69) yields

f1 s = iΦ
es

ms

∫ t

−∞

(
k⊥ cos χ

∂ f0 s

∂v⊥
+ k‖

∂ f0 s

∂v‖

) ∑
n,m=−∞,∞

Jn

(
k⊥ v⊥
Ωs

)
Jm

(
k⊥ v⊥
Ωs

)
× exp

{
i
[
(nΩs + k‖ v‖ − ω) (t′ − t) + (m − n) θ

]}
dt′. (7.117)

Here, Ωs = es B0/ms and χ = −Ωs (t′− t) + θ, whereas the Cartesian components of k
and v are written (k⊥, 0, k‖) and (v⊥ cos θ, v⊥ sin θ, v‖), respectively. The equilibrium
magnetic field takes the form B0 = (0, 0, B0). Equations (7.115) and (7.117) can be
combined to give

k2 = i
∑

s

e2
s

ε0 ms

∫ t

−∞

∫ (
k⊥ cos χ

∂ f0 s

∂v⊥
+ k‖

∂ f0 s

∂v‖

) ∑
n,m=−∞,∞

Jn

(
k⊥ v⊥
Ωs

)
Jm

(
k⊥ v⊥
Ωs

)
× exp

{
i
[
(nΩs + k‖ v‖ − ω) (t′ − t) + (m − n) θ

]}
d3v dt′. (7.118)

After some tedious analysis, the previous expression reduces to the so-called Harris
dispersion relation (Harris 1961)

1 +
∑

s

e2
s

k2 ε0 ms

∑
n=−∞,∞

∫
J2

n(k⊥ v⊥/Ωs)
ω − k‖ v‖ − nΩs

(
nΩs

v⊥

∂ f0 s

∂v⊥
+ k‖

∂ f0 s

∂v‖

)
d3v = 0. (7.119)
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For Maxwellian distribution functions of the form (7.79), we can explicitly per-
form the velocity-space integrals in the Harris dispersion relation to give

1 +
∑

s

2Π2
s

(k2
‖

+ k2
⊥) v2

s

1 + ξ0 e−λs
∑

n=−∞,∞

In(λs) Z(ξn)

 = 0, (7.120)

where Πs = (ns e2
s/ε0 ms)1/2, vs = (2 Ts/ms)1/2, λs = k2

⊥ v
2
s/(2Ω

2
s), and ξn = (ω −

nΩs)/(k‖ vs). Here, the In are modified Bessel functions (Abramowitz and Stegun
1965), whereas Z is a plasma dispersion function. (See Section 7.4.) In deriving the
previous expression, use has been made of the identity (Watson 1995)∑

n=−∞,∞

e−λs In(λs) = 1. (7.121)

Consider electrostatic waves propagating parallel to the equilibrium magnetic
field. In this case, k⊥ → 0 and λs → 0, so the dispersion relation (7.120) reduces to

1 +
∑

s

2Π2
s

(k‖ vs)2

[
1 + ξ0 Z(ξ0)

]
= 0, (7.122)

with the eigenvector (0, 0, Ez). (Recall that E ∝ k for an electrostatic wave.) It can be
seen that this expression is identical to the dispersion relation (7.97) for longitudinal
plasma waves. Consider electrostatic waves propagating perpendicular to the equi-
librium magnetic field. In this case, k‖ → 0 and ξn → ∞, so the dispersion relation
(7.120) reduces to

1 +
∑

s

2Π2
s

(k⊥ vs)2

1 − ξ0 e−λs
∑

n=−∞,∞

In(λs)
ξn

 = 0, (7.123)

with the eigenvector (Ex, 0, 0). Making use of the identity (7.121), as well as the fact
that I−n(λs) = In(λs) (Abramowitz and Stegun 1965), the previous expression can be
rearranged to give

1 −
∑

s

Π2
s

ω

e−λs

λs

∑
n=−∞,∞

n2 In(λs)
ω − nΩs

= 0. (7.124)

It can be seen that this expression is identical to the dispersion relation (7.111)
for Bernstein waves. Thus, we can now appreciate that plasma waves and
Bernstein waves are merely different aspects of a more general type of electrostatic
wave. This wave takes the form of a plasma wave when propagating parallel to the
equilibrium magnetic field, of a Bernstein wave when propagating perpendicular to
the magnetic field, and takes an intermediate form when propagating obliquely to the
magnetic field.

7.10 VELOCITY-SPACE INSTABILITIES

Up to now, we have mostly concentrated on waves that propagate through warm
plasmas possessing Maxwellian velocity distributions. We found that, under certain
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circumstances, damping occurs because of a transfer of energy from the wave to a
group of particles that satisfy some resonance condition. Moreover, the damping rate
only depends on the properties of the velocity distribution function in the resonant
region of velocity space. It turns out that if the velocity distribution function is not
Maxwellian (for instance, if the distribution function possesses multiple maxima)
then it is possible for the energy transfer to be reversed, so that the wave grows at the
expense of the kinetic energy of the resonant particles. This type of plasma instability,
which depends on the exact shape of the velocity distribution function, is generally
known as a velocity-space instability (Cairns 1985).

Consider the dispersion relation (7.23) for an electrostatic plasma wave in an
unmagnetized quasi-neutral plasma with stationary ions. This relation can be written

k2 =
e2

ε0 me

∫ ∞

−∞

∂F0/∂u
u − ω/k

du, (7.125)

or
k2 = f (U), (7.126)

where

f (U) =
e2

ε0 me

∫ ∞

−∞

∂F0/∂u
u − U

du, (7.127)

and U = ω/k. Taking k to be real and positive, the question of whether the system
is stable or not is equivalent to asking whether Equation (7.126) is satisfied for any
value of U lying in the upper half of the complex plane.

To answer the previous question, we employ a standard result in complex variable
theory which states that the number of zeros minus the number of poles of f (U)− k2

in a given region of the complex U plane is (2π)−1 times the increase in the argument
of f (U) − k2 as U moves once counter-clockwise around the boundary of this region
(Flanigan 2010). To determine the latter quantity, we construct what is known as
a Nyquist diagram (Nyquist 1932). Because the region in which we are interested
is the upper-half complex plane, we let U follow the semi-circular path shown in
Figure 7.10(a), and plot the corresponding path followed in the complex plane by
f (U), as illustrated in Figure 7.10(b). Now, f (U) → 0 as |U | → ∞. Hence, if the
radius of the semicircle in Figure 7.10(a) tends to infinity then only that part of the
contour running along the real axis is important, and the f (U) contour starts and
finishes at the origin. Because the function f (U) is analytic in the upper-half U plane,
by virtue of the way in which it is defined, the number of zeros of f (U) − k2 is
equal to the change in argument (divided by 2π) of this quantity as the path shown
in Figure 7.10(b) is followed. However, this is just the number of times that the
path encircles the point k2. Hence, the criterion for instability is that the path should
encircle part of the positive real axis. Thus, in Figure 7.10(b), the system is unstable
for the indicated values of k2 (Cairns 1985).

In an unstable system, there must exist a point such as A in Figure 7.10(b) where
the f (U) contour crosses the real axis going from negative to positive imaginary part.
Now, as U moves along the real axis [cf., Equation (7.26)],

ε0 me

e2 f (U) = P
∫ ∞

−∞

F′0(u)
u − U

du + i π F′0(U). (7.128)
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(a)

(b)

Im(U)

Im[f(U)]

range of unstable k 2

A

Re(U)

Re[f(U)]

Figure 7.10 A Nyquist diagram.

Thus, at point A, corresponding to U = U0 (say), it must be the case that F′0(U0) =

0. Furthermore, F′0(U) must go from being negative to being positive as U passes
through U0 from below. This implies that F0(U) attains a minimum at U = U0. In
other words, a necessary condition for the distribution function F0(u) to be unstable
is that it should attain a minimum value at some finite value of u. A further condition
to be satisfied is that the real part of f (U) be positive at U = U0. In other words,∫ ∞

−∞

F′0(u)
u − U0

du > 0. (7.129)

Note that the principal part need not be taken in the previous integral, because the
numerator vanishes at the same point as the denominator. Integration by parts yields
the equivalent condition ∫ ∞

−∞

F0(u) − F0(U0)
(u − U0)2 du > 0. (7.130)

Here, F0(U0) has been chosen as the constant of integration in order to again make
it unnecessary to take the principal part. The previous relation is called the Penrose
condition, and is a necessary and sufficient condition for instability, assuming that
f (u) attains a minimum value at u = U0 (Penrose 1960).
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The previous discussion implies that a single-humped velocity distribution func-
tion, such as a Maxwellian, is absolutely stable to velocity-space instabilities (Gard-
ner 1963). This follows because there is no finite value of u at which such a dis-
tribution function attains a minimum value. In fact, assuming that the distribution
function, F0(u), is such that F0(u) → 0 as |u| → ∞, we deduce that an unstable dis-
tribution function must possess at least one minimum and two maxima for u in the
range −∞ < u < ∞.

7.11 COUNTER-PROPAGATING BEAM INSTABILITY

As an example of a potentially unstable velocity distribution function, consider

F0(u) = ne
ve

2π

[
1

v2
e + (u − V)2 +

1
v2

e + (u + V)2

]
. (7.131)

This function corresponds to two counter-streaming electron beams with so-called
Cauchy velocity distributions characterized by the mean velocities ±V , and the ther-
mal spreads ve. Here,

ne =

∫ ∞

−∞

F0(u) du (7.132)

is the electron number density. (It is assumed that there is a stationary background
ion fluid of charge density e ne.) We have seen that a necessary, but not sufficient,
criterion for the distribution function (7.131) to be unstable is that it should possess a
minimum at finite u. It is easily demonstrated that this is the case provided ve <

√
3 V ,

and, furthermore, that the minimum lies at u = 0. Thus, the system is potentially
unstable if ve <

√
3 V . In order to determine whether the system is actually unstable,

we need to evaluate the Penrose condition (7.130) at the minimum. It turns out that
the Penrose integral can be evaluated exactly for U0 = 0. In fact,∫ ∞

−∞

F0(u) − F0(U0)
(u − U0)2 du = ne

[
V2 − v2

e

(V2 + v2
e)2

]
. (7.133)

The instability criterion is that this integral be positive, which yields ve < V . Assum-
ing that k is real and positive, it can be shown that, in the small-k limit, k � Πe/V ,
the growth-rate of the instability is written γ ≡ −iω ' k (V − ve).

7.12 CURRENT-DRIVEN ION ACOUSTIC INSTABILITY

As a second example, consider ion acoustic waves in a plasma with single-charged
ions in which the electron velocity distribution function takes the simplified form

F0 e(ue) = n
ve

π

1
v2

e + (ue − Ue)2 , (7.134)

and the ion distribution is written

F0 i(ui) = n
vi

π

1
v2

i + u2
i

. (7.135)
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Here, ue and ui are the parallel (to k) electron and ion velocities, respectively, n
is the particle number density, ve and vi are the electron and ion thermal spreads,
respectively, and Ue is the electron-ion drift velocity. We saw in Section 7.5 that, in
the absence of drift, the ion acoustic wave is damped. We now wish to investigate
whether the presence of an electron-ion drift (which is associated with a net current
flowing in the plasma) can destabilize the mode. The appropriate dispersion relation
is Equation (7.49), which, on integration by parts, can be written

k2 =
e2

ε0 me

∫ ∞

−∞

F0 e

(ue − ω/k)2 due +
e2

ε0 mi

∫ ∞

−∞

F0 i

(ui − ω/k)2 dui. (7.136)

The previous three equations can be combined together, and the integrals performed
as contour integrals in the complex ue and ui planes (closed in the lower halves of
these planes), making use of the residue theorem (Riley 1974), to give

1 =
Π2

e

(ω − k Ue + i k ve)2 +
Π2

i

(ω + i k vi)2 , (7.137)

where we have assumed that k is real and positive, and that ω/k lies in the upper
half of the complex plane. In the limit k λD e � 1, where λD e = ve/Πe, the left-
hand side of the previous expression is negligible compared to the two terms on the
right-hand side, and we obtain

ω + i k vi ' ±i
(

me

mi

)1/2

(ω − k Ue + i k ve). (7.138)

Choosing the negative sign, which ensures that the phase-velocity is in the correct
direction, we get

ω ' k
(

me

mi

)1/2

ve + i k

(me

mi

)1/2

Ue − vi

 . (7.139)

If we write ve = (Te/me)1/2 and vi = (Ti/mi)1/2, where Te and Ti are the effective
electron and ion temperatures, then the previous expression yields

ω ' k
(

Te

mi

)1/2

+ i k
(

me

mi

)1/2 Ue −

(
Ti

me

)1/2 . (7.140)

Thus, the phase-velocity of the wave is (Te/mi)1/2, whereas the growth-rate is

γ = k
(

me

mi

)1/2 Ue −

(
Ti

me

)1/2 . (7.141)

It can be seen that the growth-rate becomes positive (i.e., the mode becomes unstable)
when the drift velocity exceeds the critical value

Ue c =

(
Ti

me

)1/2

=

(
Ti

Te

)1/2

ve. (7.142)
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This calculation indicates that if the electron and ion temperatures are similar then
the threshold drift velocity is of order the electron thermal speed, which is usually
very large. In other words, a significant current is generally required to drive the
ion acoustic wave unstable. The instability threshold (relative to the electron thermal
speed) is considerably reduced if the electron temperature greatly exceeds the ion
temperature.

If we repeat the previous calculation using the more realistic Maxwellian velocity
distributions,

F0 e(ue) =
n

(2πTe/me)1/2 exp
[
−

me (ue − Ue)2

2 Te

]
, (7.143)

and

F0 i(ui) =
n

(2πTi/mi)1/2 exp
−mi u2

i

2 Ti

 , (7.144)

then the dispersion relation (7.136) yields

1 =
Z′(ζe)

2 (k λD e)2 +
Z′(ζi)

2 (k λD i)2 , (7.145)

where λD s = (Ts/ms Π
2
s )1/2, ζe = (me/2 Te)1/2 (ω/k − Ue), and ζi = (mi/2 Ti) (ω/k).

As in Section 7.5, we assume that the phase-velocity of the wave is much less than
the electron thermal velocity, but much greater than the ion thermal velocity. This
implies that |ζe| � 1 and |ζi| � 1. Using the small-argument expansion

Z′(ζe) ' −i 2
√
π ζe e−ζ

2
e − 2, (7.146)

and the large-argument expansion

Z′(ζi) ' −i 2
√
π ζi e−ζ

2
i +

1
ζ2

i

, (7.147)

we obtain

2 (k λD e)2 '
Te

Ti

1
ζ2

i

− 2 − i 2
√
π

(
Te

Ti
ζi e−ζ

2
i + ζe

)
. (7.148)

In the limit k λD e � 1, the previous expression yields ω = ωr + i γ, where

ωr ' k cs, (7.149)

and
γ

ωr
' −

√
π

8

(me

mi

)1/2 (
1 −

Ue

cs

)
+

(
Te

Ti

)3/2

exp
(
−

Te

2 Ti

) , (7.150)

Here, cs = (Te/mi)1/2 is the phase-velocity of the ion acoustic wave, and it is as-
sumed that |γ|/ωr � 1. The ion acoustic wave phase-velocity is much less than the
electron thermal speed, as previously assumed, but is only much greater than the ion
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thermal speed if Te � Ti. According to Equation (7.150), the threshold electron-ion
drift speed above which the ion acoustic wave is destabilized is

Ue c = cs

1 +

(
mi

me

)1/2 (
Te

Ti

)3/2

exp
(
−

Te

2 Ti

) . (7.151)

As before, this formula (which is only accurate when Te � Ti) indicates that the
threshold is strongly reduced (relative to cs) as the ratio of the electron to the ion
temperature is increased.

7.13 HARRIS INSTABILITY

It is not feasible to give a comprehensive account of velocity-space instabilities in a
magnetized plasma, on account of the great number of different instabilities of this
type. Rather than trying to analyze the full electromagnetic dispersion relation, we
shall concentrate on the stability of electrostatic waves. Instabilities of this type tend
to be more important than electromagnetic instabilities, particularly in low-β plasmas
(Cairns 1985). Our starting point is the Harris dispersion relation, (7.119):

ε(k, ω) = 1 +
∑

s

e2
s

k2 ε0 ms

∑
n=−∞,∞

∫
J2

n(k⊥ v⊥/Ωs)
ω − k‖ v‖ − nΩs

(
nΩs

v⊥

∂ f0 s

∂v⊥
+ k‖

∂ f0 s

∂v‖

)
d3v

= 0. (7.152)

Making use of the Plemelj formula, (7.26), we can write the previous expression in
the form

ε(k, ω) = εr(k, ω) + i εi(k, ω) = 0, (7.153)

where

εr(k, ω) = 1 +
∑

s

e2
s

k2 ε0 ms

∑
n=−∞,∞

P
∫

J2
n(k⊥ v⊥/Ωs)

ω − k‖ v‖ − nΩs

(
nΩs

v⊥

∂ f0 s

∂v⊥
+ k‖

∂ f0 s

∂v‖

)
d3v,

(7.154)
and

εi(k, ω) = −π
∑

s

e2
s

k2 ε0 ms

∑
n=−∞,∞

∫
J2

n(k⊥ v⊥/Ωs) δ(ω − k‖ v‖ − nΩs)

×

(
nΩs

v⊥

∂ f0 s

∂v⊥
+ k‖

∂ f0 s

∂v‖

)
d3v. (7.155)

Generally speaking, we expect |εi| � |εr |. Let us search for an instability whose
angular frequency is ω = ωr + i γ, where ωr is real and positive, γ is real, and
|γ| � ωr. Thus, ωr is the real frequency of the instability, ωr/k its phase-velocity,
and γ its growth-rate. Expanding (7.153) to first-order in γ, we obtain

ε(k, ωr + i γ) ' εr(k, ωr) + i γ
∂εr(k, ωr)

∂ω
+ i εi(k, ωr) = 0. (7.156)
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Here, the quantities εr(k, ωr), ∂εr(k, ωr)/∂ω, and εi(k, ωr) are all real. Thus, the real
frequency of the instability is determined from

εr(k, ωr) = 0, (7.157)

whereas the growth-rate is given by

γ = −
εi(k, ωr)

∂εr(k, ωr)/∂ω
. (7.158)

Consider the so-called Harris instability, which occurs for real frequencies close
to the ion cyclotron harmonics in a plasma in which the parallel and perpendicular
(to the equilibrium magnetic field) temperatures are different (Harris 1970; Cairns
1985). Suppose that the equilibrium velocity distribution functions are two-temperat-
ure Maxwellians of the form

f0 s =
ns(

2πT 2/3
⊥ s T 1/3

‖ s /ms

)3/2 exp

−ms v
2
⊥

2 T⊥ s
−

ms v
2
‖

2 T‖ s

 . (7.159)

Here, T⊥ s and T‖ s are the species-s perpendicular and parallel temperatures, respec-
tively. It follows that

εr(k, ω) = 1 +
∑

s

Π2
s

(k v‖ s)2

∑
n=−∞,∞

exp
(
−

k2
⊥ v

2
⊥ s

2Ω2
s

)
In

(
−

k2
⊥ v

2
⊥ s

2Ω2
s

)

×

[
2 nΩs

k‖ v‖ s

T‖ s

T⊥ s
Zr

(
ω − nΩs

k‖ v‖ s

)
− Z′r

(
ω − nΩs

k‖ v‖ s

)]
, (7.160)

and

εi(k, ω) =
∑

s

Π2
s

(k v‖ s)2

∑
n=−∞,∞

exp
(
−

k2
⊥ v

2
⊥ s

2Ω2
s

)
In

(
−

k2
⊥ v

2
⊥ s

2Ω2
s

)

×

[
2 nΩs

k‖ v‖ s

T‖ s

T⊥ s
Zi

(
ω − nΩs

k‖ v‖ s

)
− Z′i

(
ω − nΩs

k‖ v‖ s

)]
, (7.161)

where Πs = (ns e2
s/ε0 ms)1/2, v⊥ s = (2 T⊥ s/ms)1/2, and v‖ s = (2 T‖ s/ms)1/2. More-

over, Zr and i Zi denote the principal part and the remainder of the plasma dispersion
function, respectively. However, according to Section 7.4,

Zi(ζ) = π1/2 e−ζ
2
, (7.162)

Z′i (ζ) = −2 π1/2 ζ e−ζ
2
. (7.163)

Hence, we can write

εi(k, ω) = 2π1/2
∑

s

Π2
s

(k v‖ s)2

∑
n=−∞,∞

exp
(
−

k2
⊥ v

2
⊥ s

2Ω2
s

)
In

(
−

k2
⊥ v

2
⊥ s

2Ω2
s

)

×

[
nΩs

k‖ v‖ s

(
T‖ s

T⊥ s
− 1

)
+

ω

k‖ v‖ s

]
exp

− (
ω − nΩs

k‖ v‖ s

)2 . (7.164)
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Suppose, for the sake of simplicity, that the electrons are “cold” but the ions are
“hot”. In other words, v⊥ s, v‖ s → 0 for the electrons, but not for the ions. In this
situation, Equation (7.160) reduces to

εr(k, ω) ' 1 −
Π2

e

ω2

k2
‖

k2 . (7.165)

The ion contribution to the previous expression is negligible compared to the elec-
tron contribution, because of the m−1

s dependence of Π2
s . The real frequency of the

instability is determined from

εr(k, ωr) ' 1 −
Π2

e

ω2
r

k2
‖

k2 = 0, (7.166)

which implies that

ωr ' Πe
k‖
k
. (7.167)

Furthermore,
∂εr(k, ωr)

∂ω
'

2
ωr
. (7.168)

Hence, the growth-rate of the instability is written

γ = −
εi(k, ωr)

∂εr(k, ωr)/∂ω
= −

ωr

2
εi(k, ωr), (7.169)

or

γ

ωr
' π1/2

∑
s

Π2
i

(k v‖ i)2

∑
n=−∞,∞

exp
−k2

⊥ v
3
⊥ i

2Ω2
i

 In

−k2
⊥ v

2
⊥ i

2Ω2
i


×

[
nΩi

k‖ v‖ i

(
1 −

T‖ i

T⊥ i

)
−

ωr

k‖ v‖ i

]
exp

− (
ωr − nΩi

k‖ v‖ i

)2 . (7.170)

The electron contribution to the previous expression is negligible compared to the
ion contribution, because v‖ e → 0.

It can be seen, from the previous formula, that if T‖ i = T⊥ i then γ < 0 for
all values of ωr (recall that ωr > 0). In other words, there is no instability if the
perpendicular and parallel ion temperatures are equal to one another. On the other
hand, if T‖ i < T⊥ i then there is a range of ωr values for which each term in the sum
on the right-hand side of (7.170) is positive. In other words, there is the possibility of
an instability. The variation of γ/ωr with ωr is shown schematically in Figure 7.11
for a case where Ωi/(k‖ v‖ i) is relatively large. It can be seen that the growth-rate
is positive in a narrow range of real frequencies lying on the low frequency side
of each harmonic of the ion cyclotron frequency, and negative in a similar range of
frequencies on the high frequency side.

According to Equation (7.167), ωr varies from zero to Πe. Thus, a necessary
condition for obtaining an instability close to the nth ion cyclotron harmonic is Πe >



Waves in Warm Plasmas � 193

ωr

Ωi 2Ωi 3Ωi

γ/ωr

Figure 7.11 Schematic diagram showing the growth-rate of the Harris instability as
a function of its real frequency.

nΩi. Now, the positive contribution from the nth term in the sum on the right-hand
side of Equation (7.170) peaks close to

ωr = ωr n ≡ nΩi

(
1 −

T‖ i

T⊥ i

)
. (7.171)

In order for the net growth-rate to be positive, we require that

ωr n >

(
n −

1
2

)
Ωi, (7.172)

which implies that (Harris 1970)

T‖ i

T⊥ e
<

1
2 n

. (7.173)

If this inequality is not satisfied then the negative contribution from the (n−1)th term
in the sum predominates over the positive contribution from the nth term. Observe
that the previous inequality becomes harder to satisfy as n increases.

7.14 EXERCISES

1. Derive the dispersion relation (7.28) from Equations (7.23)–(7.27).

2. Show that the dispersion relation (7.28) can be written

1 −
1
x
−

3 y2

x2 + i ε(x, y) = 0,
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where x = (ω/Πe)2, y = k λD, Πe = (n e2/ε0 me)1/2, λD = (Te/me Π
2
e )1/2, and

ε(x, y) =

(
π

2

)1/2 x1/2

y3 exp
(
−

x
2 y2

)
.

Demonstrate that, in the limit y, ε � 1, the approximate solution is

x ' 1 + 3 y2 − i ε(1, y).

3. Show that, when combined with the Maxwellian velocity distribution (7.24),
the dispersion relation (7.23) reduces to

1 −
Z′(ζ)

2 (k λD)2 = 0,

where ζ = (ω/Πe)/(k λD)/
√

2, Πe = (n e2/ε0 me)1/2, λD = (Te/me Π
2
e )1/2, and

Z(ζ) is the plasma dispersion function. Hence, deduce from the large argument
asymptotic form of the plasma dispersion function that

−2 i π1/2 ζ e−ζ
2

+
1
ζ2 +

3
2 ζ4 + O

(
1
ζ6

)
= 2 (k λD)2

in the limit k λD � 1. Show that the approximate solution of the previous
equation is

ω

Πe
=
√

2 (k λD) ζ ' 1 +
3
2

(k λD)2 −
i
2

(
π

2

)1/2 1
(k λD)3 exp

[
−

1
2 (k λD)2

]
.

4. Show that, when combined with the Maxwellian velocity distribution (7.24),
the dispersion relation (7.49) reduces to

1 −
Z′(ζe)

2 (k λD e)2 −
Z′(ζi)

2 (k λD i)2 = 0,

where Πs = (n e2/ε0 ms)1/2, λD s = (Ts/ms Π
2
s )1/2, ζs = (ms/2 Ts)1/2 ω/k, and

Z(ζ) is the plasma dispersion function. Use the large-argument expansion of
the plasma dispersion function for the ions,

Z′(ζi) ' −i 2
√
π ζi e−ζ

2
i +

1
ζ2

i

,

and the small-argument expansion for the electrons,

Z′(ζe) ' −i 2
√
π ζe e−ζ

2
e − 2.

Substituting these expansions into the dispersion relation, writing ω = ωr + i γ,
where ωr and γ are both real, and |γ| � ωr, demonstrate that

ωr

k
'

(
Te

mi

)1/2 1[
1 + (k λD e)2]1/2 ,
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and

γ

ωr
' −

(π/8)1/2[
1 + (k λD e)2]3/2

(me

mi

)1/2

+

(
Te

Ti

)3/2

exp
(
−

Te

2 Ti

1[
1 + (k λD e)2] )

 .
5. Derive Equation (7.74) from Equations (7.69) and (7.73).

6. Derive Equation (7.82) from Equations (7.74) and (7.79).

7. Derive Equations (7.89)–(7.91) from Equation (7.82).

8. Derive Equations (7.94)–(7.96) from Equation (7.82).

9. Derive Equations (7.102)–(7.105) from Equation (7.82).

10. Derive Equation (7.119) from Equation (7.118).

11. Derive Equation (7.120) from Equations (7.79) and (7.119).

12. Derive Equation (7.124) from Equation (7.123).

13. Demonstrate that the distribution function (7.131) possesses a minimum at
u = 0 when ve <

√
3 V , but not otherwise.

14. Verify formula (7.133).

15. Consider an unmagnetized quasi-neutral plasma with stationary ions in which
the electron velocity distribution function takes the form

F0(u) = ne
ve

2π

[
1

v2
e + (u − V)2 +

1
v2

e + (u + V)2

]
.

Demonstrate that the dispersion relation for electrostatic plasma waves can be
written

k2 = Π2
e
ve

2π

[∫ ∞

−∞

du
(u − ω/k)2 [v2

e + (u − V)2]
+

∫ ∞

−∞

du
(u − ω/k)2 [v2

e + (u + V)2]

]
,

where Πe = (ne e2/ε0 me)1/2. Assuming that k is real and positive, and that ω/k
lies in the upper half of the complex plane, show that when the integrals are
evaluated as contour integrals in the complex u-plane (closed in the lower half
of the plane), making use of the residue theorem (Riley 1974), the previous
dispersion relation reduces to

2 = Π2
e

[
1

(k V − ζ)2 +
1

(k V + ζ)2

]
,

where ζ = ω + i k ve. Finally, in the small-k limit, k � Πe/V , demonstrate that
the growth-rate of the most unstable mode is

γ ≡ −iω ' k (V − ve).
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16. Derive Equation (7.137) from Equations (7.134)–(7.136).

17. Derive Equations (7.160) and (7.161) from Equations (7.154), (7.155), and
(7.159).



C H A P T E R 8

Magnetohydrodynamic
Fluids

8.1 INTRODUCTION

As we saw in Section 4.14, the MHD equations are written

dρ
dt

+ ρ∇ · V = 0, (8.1)

ρ
dV
dt

+ ∇p − j × B = 0, (8.2)

E + V × B = 0, (8.3)

d
dt

(
p
ρΓ

)
= 0, (8.4)

where ρ is the plasma mass density, V the center of mass velocity, p the pressure,
E the electric field-strength, B the magnetic field-strength, and Γ = 5/3 the ratio of
specific heats.

It is often remarked that Equations (8.1)–(8.4) are identical to the equations gov-
erning the motion of an inviscid, adiabatic, perfectly conducting, electrically neutral,
liquid. Indeed, this observation is sometimes used as the sole justification for adopt-
ing the MHD equations. After all, a hot, tenuous, quasi-neutral plasma is highly con-
ducting, and if the motion is sufficiently rapid then viscosity and heat conduction can
both plausibly be neglected (which implies that the motion is adiabatic). However,
as should be clear from the discussion in Section 4.12, this is a highly oversimplified
and misleading argument. The problem, of course, is that a weakly coupled plasma
is a far more complicated dynamical system than a conducting liquid.

According to the analysis of Section 4.12, the MHD equations are only valid
when

δ−1 vt � V � δ vt (8.5)

for both species. Here, V is the typical fluid velocity associated with the plasma
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dynamics under investigation, vt is the typical thermal velocity, and δ is the typical
magnetization parameter (i.e., the ratio of a particle gyroradius to the scalelength of
the motion). Clearly, the previous inequality is most likely to be satisfied in a highly
magnetized (i.e., δ→ 0) plasma.

If the plasma dynamics becomes too rapid (i.e., V ∼ δ−1 vt) then resonances
occur with the motions of individual particles (e.g., the cyclotron resonances), which
invalidate the MHD equations. Furthermore, effects, such as electron inertia and the
Hall current, that are not (usually) taken into account in the MHD equations, become
important.

MHD is essentially a single-fluid plasma theory. A single-fluid approach is jus-
tified because the perpendicular motion is dominated by E × B drifts, which are the
same for both plasma species. Furthermore, the relative streaming velocity, U‖, of
both species parallel to the magnetic field is strongly constrained by the fundamental
MHD ordering (see Section 4.12)

U ∼ δV. (8.6)

However, if the plasma dynamics becomes too slow (i.e., V ∼ δ vt) then the mo-
tions of the electron and ion fluids become sufficiently different that a single-fluid
approach is no longer tenable. This occurs because the diamagnetic velocities, which
are quite different for different plasma species, become comparable to the E × B ve-
locity. (See Section 4.15.) Furthermore, effects such as plasma resistivity, viscosity,
and thermal conductivity, which are not (usually) taken into account in the MHD
equations, become important in this limit.

It follows, from the previous discussion, that the MHD equations describe rela-
tively violent, large-scale motions of highly magnetized plasmas.

Strictly speaking, the MHD equations are only valid in collisional plasmas (i.e.,
plasmas in which the mean-free-path is much smaller than the typical variation scale-
length). However, as is discussed in Section 4.16, the MHD equations also describe
the perpendicular (but not the parallel) motions of collisionless plasmas fairly accu-
rately.

Assuming that the MHD equations are valid, let us now investigate their proper-
ties.

8.2 MAGNETIC PRESSURE

The MHD equations can be combined with the Ampère- and Faraday-Maxwell equa-
tions,

∇ × B = µ0 j, (8.7)

∇ × E = −
∂B
∂t
, (8.8)

respectively, to form a closed set. The displacement current is neglected in Equa-
tion (8.7) on the reasonable assumption that MHD motions are slow compared to
the velocity of light in vacuum. Equation (8.8) guarantees that ∇ · B = 0, provided
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that this relation is presumed to hold initially. Furthermore, the assumption of quasi-
neutrality renders the Poisson-Maxwell equation, ∇ · E = ρc/ε0, redundant.

Equations (8.2) and (8.7) can be combined to give the MHD equation of motion:

ρ
dV
dt

= −∇p + ∇ · T, (8.9)

where

Tαβ =
Bα Bβ − δαβ B2/2

µ0
. (8.10)

Suppose that the magnetic field is approximately uniform, and directed along the
z-axis. In this case, the previous equation of motion reduces to

ρ
dV
dt

= −∇ · P, (8.11)

where

P =


p + B2/2 µ0, 0, 0

0, p + B2/2 µ0, 0
0, 0, p − B2/2 µ0

 . (8.12)

It can be seen that the magnetic field increases the plasma pressure, by an amount
B2/(2 µ0), in directions perpendicular to the magnetic field, and decreases the plasma
pressure, by the same amount, in the parallel direction. Thus, the magnetic field gives
rise to a magnetic pressure, B2/(2 µ0), acting perpendicular to field-lines, and a mag-
netic tension, B2/(2 µ0), acting along field-lines. Because, as will become apparent
in the next section, the plasma is tied to magnetic field-lines, it follows that magnetic
field-lines embedded in an MHD plasma act rather like mutually repulsive elastic
bands.

8.3 FLUX FREEZING

The MHD Ohm’s law,
E + V × B = 0, (8.13)

is sometimes referred to as the perfect conductivity equation (for obvious reasons),
and sometimes as the flux freezing equation. The latter nomenclature comes about be-
cause Equation (8.13) implies that the magnetic flux through any loop in the plasma,
each element of which moves with the local plasma velocity, is a conserved quantity.

In order to verify the previous assertion, let us consider the magnetic flux, Ψ ,
through a loop, C, that is co-moving with the plasma:

Ψ =

∫
S

B · dS. (8.14)

Here, S is some surface that spans C. The time rate of change of Ψ is made up of two
parts. First, there is the part due to the time variation of B over the surface S, which
can be written (

∂Ψ

∂t

)
1

=

∫
S

∂B
∂t
· dS. (8.15)
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Using the Faraday-Maxwell equation, this reduces to(
∂Ψ

∂t

)
1

= −

∫
S
∇ × E · dS. (8.16)

Second, there is the part due to the motion of C. If dr is an element of C then V×dr is
the area swept out by dr per unit time. Hence, the flux crossing this area is B ·V×dr.
It follows that (

∂Ψ

∂t

)
2

=

∫
C

B · V × dr =

∫
C

B × V · dr. (8.17)

Using the curl theorem, we obtain(
∂Ψ

∂t

)
2

=

∫
S
∇ × (B × V) · dS. (8.18)

Hence, the total time rate of change of Ψ is given by

dΨ
dt

= −

∫
S
∇ × (E + V × B) · dS. (8.19)

The condition
E + V × B = 0 (8.20)

clearly implies that Ψ remains constant in time for any arbitrary co-moving loop, C.
This, in turn, implies that magnetic field-lines must move with the plasma. In other
words, the field-lines are frozen into the plasma.

A flux-tube is defined as a topologically cylindrical volume whose sides are de-
fined by magnetic field-lines. Suppose that, at some initial time, a flux-tube is em-
bedded in the plasma. According to the flux-freezing constraint,

dΨ
dt

= 0, (8.21)

the subsequent motion of the plasma and the magnetic field is always such that it
maintains the integrity of the flux-tube. Because magnetic field-lines can be regarded
as infinitely thin flux-tubes, we conclude that MHD plasma motion also maintains
the integrity of field-lines. In other words, magnetic field-lines embedded in an MHD
plasma can never break and reconnect: that is, MHD forbids any change in topology
of the field-lines. It turns out that this is an extremely restrictive constraint. We shall
discuss situations in which this constraint is relaxed in Chapter 9.

8.4 MHD WAVES

Let us investigate the small amplitude waves that propagate through a spatially uni-
form MHD plasma. We start by combining Equations (8.1)–(8.4) and (8.7)–(8.8) to
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form a closed set of equations:

dρ
dt

+ ρ∇ · V = 0, (8.22)

ρ
dV
dt

+ ∇p −
(∇ × B) × B

µ0
= 0, (8.23)

−
∂B
∂t

+ ∇ × (V × B) = 0, (8.24)

d
dt

(
p
ρΓ

)
= 0. (8.25)

Next, we linearize these equations (assuming, for the sake of simplicity, that the
equilibrium flow velocity and equilibrium plasma current are both zero) to give

∂ρ

∂t
+ ρ0 ∇ · V = 0, (8.26)

ρ0
∂V
∂t

+ ∇p −
(∇ × B) × B0

µ0
= 0, (8.27)

−
∂B
∂t

+ ∇ × (V × B0) = 0, (8.28)

∂

∂t

(
p
p0
−
Γ ρ

ρ0

)
= 0. (8.29)

Here, the subscript 0 denotes an equilibrium quantity. Perturbed quantities are written
without subscripts. Of course, ρ0, p0, and B0 are constants in a spatially uniform
plasma.

Let us search for wave-like solutions to Equations (8.26)–(8.29) in which per-
turbed quantities vary like exp[ i (k · r − ω t)]. It follows that

−ωρ + ρ0 k · V = 0, (8.30)

−ωρ0 V + p k −
(k × B) × B0

µ0
= 0, (8.31)

ωB + k × (V × B0) = 0, (8.32)

−ω

(
p
p0
−
Γ ρ

ρ0

)
= 0. (8.33)

Assuming that ω , 0, the previous equations yield

ρ = ρ0
k · V
ω

, (8.34)

p = Γ p0
k · V
ω

, (8.35)

B =
(k · V) B0 − (k · B0) V

ω
. (8.36)
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Substitution of these expressions into the linearized equation of motion, Equation
(8.31), gives[
ω2 −

(k · B0)2

µ0 ρ0

]
V =

Γ p0

ρ0
+

B2
0

µ0 ρ0

 k −
(k · B0)
µ0 ρ0

B0

 (k · V)] −
(k · B0) (V · B0)

µ0 ρ0
k.

(8.37)

We can assume, without loss of generality, that the equilibrium magnetic field,
B0, is directed along the z-axis, and that the wavevector, k, lies in the x-z plane. Let θ
be the angle subtended between B0 and k. Equation (8.37) reduces to the eigenvalue
equation
ω2 − k2 V2

A − k2 V2
S sin2 θ, 0, −k2 V2

S sin θ cos θ
0, ω2 − k2 V2

A cos2 θ, 0
−k2 V2

S sin θ cos θ, 0, ω2 − k2 V2
S cos2 θ




Vx

Vy

Vz

 = 0.

(8.38)
Here,

VA =

√
B2

0

µ0 ρ0
(8.39)

is the Alfvén speed, and

VS =

√
Γ p0

ρ0
(8.40)

is the sound speed. The solubility condition for Equation (8.38) is that the determi-
nant of the square matrix is zero. This yields the dispersion relation

(ω2 − k2 V2
A cos2 θ)

[
ω4 − ω2 k2 (V2

A + V2
S ) + k4 V2

A V2
S cos2 θ

]
= 0. (8.41)

There are three independent roots of the previous dispersion relation, correspond-
ing to the three different types of wave that can propagate through an MHD plasma.
The first, and most obvious, root is

ω = k VA cos θ, (8.42)

which has the associated eigenvector (0, Vy, 0). This root is characterized by both
k · V = 0 and V · B0 = 0. It immediately follows from Equations (8.34) and (8.35)
that there is zero perturbation of the plasma density or pressure associated with the
root. In fact, this particular root can easily be identified as the shear-Alfvén wave
introduced in Section 5.8. The properties of the shear-Alfvén wave in a warm (i.e.,
nonzero pressure) plasma are unchanged from those found earlier in a cold plasma.
Finally, because the shear-Alfvén wave only involves plasma motion perpendicular
to the magnetic field, we would expect the dispersion relation (8.42) to hold good in
a collisionless, as well as a collisional, plasma.

The remaining two roots of the dispersion relation (8.41) are written

ω = k V+, (8.43)
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and
ω = k V−, (8.44)

respectively. Here,

V± =

{
1
2

[
V2

A + V2
S ±

√
(V2

A + V2
S )2 − 4 V2

A V2
S cos2 θ

]}1/2

. (8.45)

Note that V+ ≥ V−. The first root is generally termed the fast magnetosonic wave, or
fast wave, for short, whereas the second root is usually called the slow magnetosonic
wave, or slow wave. The eigenvectors for these waves are (Vx, 0, Vz). It follows that
k · V , 0 and V · B0 , 0. Hence, these waves are associated with nonzero perturba-
tions in the plasma density and pressure, and also involve plasma motion parallel, as
well as perpendicular, to the magnetic field. The latter observation suggests that the
dispersion relations (8.43) and (8.44) are likely to undergo significant modification
in collisionless plasmas.

In order to better understand the nature of the fast and slow waves, let us consider
the cold plasma limit, which is obtained by letting the sound speed, VS , tend to zero.
In this limit, the slow wave ceases to exist (in fact, its phase-velocity tends to zero),
whereas the dispersion relation for the fast wave reduces to

ω = k VA. (8.46)

This can be identified as the dispersion relation for the compressional-Alfvén wave
introduced in Section 5.8. Thus, we can identify the fast wave as the compressional-
Alfvén wave modified by a nonzero plasma pressure.

In the limit VA � VS , which is appropriate to low-β plasmas (see Section 4.16),
the dispersion relation for the slow wave reduces to

ω ' k VS cos θ. (8.47)

This is actually the dispersion relation of a sound wave propagating along magnetic
field-lines. Thus, in low-β plasmas, the slow wave is a sound wave modified by the
presence of the magnetic field.

The distinction between the fast and slow waves can be further understood by
comparing the signs of the wave-induced fluctuations in the plasma and magnetic
pressures: p and B0 · B/µ0, respectively. It follows from Equation (8.36) that

B0 · B
µ0

=
(k · V) B2

0 − (k · B0) (B0 · V)
µ0 ω

. (8.48)

Now, the z-component of Equation (8.31) yields

ωρ0 Vz = k cos θ p. (8.49)

Combining Equations (8.35), (8.39), (8.40), (8.48), and (8.49), we obtain

B0 · B
µ0

=
V2

A

V2
S

1 − k2 V2
S cos2 θ

ω2

 p. (8.50)
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z →

fast wave

shear-Alfvén wave

slow wave

VAVS

x
→

(V 2
A + V 2

S )
1/2

0
0

Figure 8.1 Schematic diagram showing the variation of the phase velocities of the
three MHD waves with direction of propagation in the x-z plane.

Hence, p and B0 · B/µ0 have the same sign if V > VS cos θ, and the opposite sign if
V < VS cos θ. Here, V = ω/k is the phase-velocity. It is straightforward to show that
V+ > VS cos θ, and V− < VS cos θ. Thus, we conclude that the plasma pressure and
magnetic pressure fluctuations reinforce one another in the fast magnetosonic wave,
whereas the fluctuations oppose one another in the slow magnetosonic wave.

Figure 8.1 shows the variation of the phase velocities of the three MHD waves
with direction of propagation in the x-z plane for a low-β plasma in which VS < VA.
It can be seen that the slow wave always has a smaller phase-velocity than the shear-
Alfvén wave, which, in turn, always has a smaller phase-velocity than the fast wave.

The existence of MHD waves was first predicted theoretically by Alfvén (Alfvén
1942). These waves were subsequently observed in the laboratory—first in magne-
tized conducting fluids (e.g., mercury) (Lundquist 1949), and then in magnetized
plasmas (Wilcox, Boley, and DeSilva 1960).

8.5 SOLAR WIND

The solar wind is a high-speed particle stream continuously blown out from the
Sun into interplanetary space (Priest 1984). It extends far beyond the orbit of the
Earth, and terminates in a shock front, called the heliopause, where it interfaces with
the weakly ionized interstellar medium. The heliopause is predicted to lie between
110 and 160 AU (1 astronomical unit, which is the mean Earth-Sun distance, is
1.5 × 1011 m) from the center of the Sun (Suess 1990). The Voyager 1 spacecraft
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is inferred to have crossed the heliopause in August of 2012 (Webber and McDonald
2013).

In the vicinity of the Earth, (i.e., at about 1 AU from the Sun), the solar wind
velocity typically ranges between 300 and 1400 km s−1 (Priest 1984). The average
value is approximately 500 km s−1, which corresponds to about a 4 day time-of-flight
from the Sun. Note that the solar wind is both supersonic and superAlfvénic, and is
predominately composed of protons and electrons.

The solar wind was predicted theoretically by Eugine Parker (Parker 1958) a
number of years before its existence was confirmed by means of satellite data
(Neugebauer and Snyder 1966). Parker’s prediction of a supersonic outflow of gas
from the Sun is a fascinating application of plasma physics.

The solar wind originates from the solar corona, which is a hot, tenuous plasma,
surrounding the Sun, with characteristic temperatures and particle densities of about
106 K and 1014 m−3, respectively (Priest 1984). The corona is actually far hotter than
the solar atmosphere or photosphere. In fact, the temperature of the photosphere is
only about 6000 K. It is thought that the corona is heated by Alfvén waves emanating
from the photosphere (Priest 1984). The solar corona is most easily observed during
a total solar eclipse, when it is visible as a white filamentary region immediately
surrounding the Sun.

Let us start, following Chapman (Chapman 1957), by attempting to construct
a model for a static solar corona. The equation of hydrostatic equilibrium for the
corona takes the form

dp
dr

= −ρ
G M�

r2 , (8.51)

where G = 6.67 × 10−11 m3 s−2 kg−1 is the gravitational constant, M� = 2 × 1030 kg
the solar mass (Yoder 1995), and r the radial distance from the center of the Sun. The
plasma density is written

ρ ' n mp, (8.52)

where n is the number density of protons. If both protons and electrons are assumed
to possess a common temperature, T (r), then the coronal pressure is given by

p = 2 n T. (8.53)

The thermal conductivity of the corona is dominated by the electron thermal
conductivity, and takes the form [see Equations (4.70) and (4.89)]

κ = κ0 T 5/2, (8.54)

where κ0 is a relatively weak function of density and temperature. For typical coronal
conditions, this conductivity is extremely high. In fact, it is about 20 times the thermal
conductivity of copper at room temperature. The coronal heat flux is written

q = −κ∇T. (8.55)

For a static corona, in the absence of energy sources or sinks, we require

∇ · q = 0. (8.56)
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Assuming spherical symmetry, this expression reduces to (Richardson 2019)

1
r2

d
dr

(
r2 κ0 T 5/2 dT

dr

)
= 0. (8.57)

Adopting the sensible boundary condition that the coronal temperature must tend to
zero at large distances from the Sun, we obtain

T (r) = T (a)
(a

r

)2/7
. (8.58)

The reference level r = a is conveniently taken to be the base of the corona, where
a ∼ 7 × 105 km, n ∼ 2 × 1014 m−3, and T ∼ 2 × 106 K (Priest 1984).

Equations (8.51), (8.52), (8.53), and (8.58) can be combined and integrated to
give

p(r) = p(a) exp
{

7
5

G M� mp

2 T (a) a

[(a
r

)5/7
− 1

]}
. (8.59)

Observe that, as r → ∞, the coronal pressure tends toward a finite constant value:

p(∞) = p(a) exp
[
−

7
5

G M� mp

2 T (a) a

]
= p(a) exp

[
−

14
5

T0

T (a)

]
, (8.60)

where T0 is defined in Equation (8.66). There is, of course, nothing at large dis-
tances from the Sun that could contain such a pressure (the pressure of the interstel-
lar medium is negligibly small). Thus, we conclude, following Parker, that the static
coronal model is unphysical.

We have just demonstrated that a static model of the solar corona is unsatisfac-
tory. Let us, instead, attempt to construct a dynamic model in which material flows
outward from the Sun.

8.6 PARKER MODEL OF SOLAR WIND

By symmetry, we expect a purely radial, steady-state, coronal outflow. The radial
equation of motion of the corona [which is a modified version of Equation (8.2)]
takes the form (Richardson 2019)

ρ u
du
dr

= −
dp
dr
− ρ

G M�
r2 , (8.61)

where u is the radial expansion speed. The continuity equation [which is equivalent
to Equation (8.1)] reduces to (Richardson 2019)

1
r2

d(r2 ρ u)
dr

= 0. (8.62)

In order to obtain a closed set of equations, we now need to adopt an equation of
state for the corona, relating the pressure, p, and the density, ρ. For the sake of sim-
plicity, we adopt the simplest conceivable equation of state, which corresponds to an
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isothermal corona. Thus, we have

p =
2 ρT
mp

, (8.63)

where T is a constant. More realistic equations of state complicate the analysis, but
do not significantly modify any of the physics results (Priest 1984).

Equation (8.62) can be integrated to give

r2 ρ u = I, (8.64)

where I is a constant. The previous expression simply states that the mass flux per
unit solid angle, which takes the value I, is independent of the radius, r. Equa-
tions (8.61), (8.63), and (8.64) can be combined to give

1
u

du
dr

(
u2 −

2 T
mp

)
=

4 T
mp r

−
G M�

r2 . (8.65)

Let us restrict our attention to coronal temperatures that satisfy

T < T0 ≡
G M�mp

4 a
, (8.66)

where a is the radius of the base of the corona. For typical coronal parameters, T0 '

5.8 × 106 K, which is certainly greater than the temperature of the corona at r = a.
For T < T0, the right-hand side of Equation (8.65) is negative for a < r < rc,
where

rc

a
=

T0

T
, (8.67)

and positive for rc < r < ∞. The right-hand side of (8.65) is zero at r = rc, implying
that the left-hand side is also zero at this radius, which is usually termed the “critical
radius”. There are two ways in which the left-hand side of (8.65) can be zero at the
critical radius. Either

u2(rc) = u2
c ≡

2 T
mp

, (8.68)

or
du(rc)

dr
= 0. (8.69)

Note that uc is the coronal sound speed.
As is easily demonstrated, if Equation (8.68) is satisfied then du/dr has the

same sign for all r, and u(r) is either a monotonically increasing, or a monoton-
ically decreasing, function of r. On the other hand, if Equation (8.69) is satisfied
then u2 − u2

c has the same sign for all r, and u(r) has an extremum close to r = rc.
The flow is either supersonic for all r, or subsonic for all r. These possibilities lead
to the existence of four classes of solutions to Equation (8.65), with the following
properties:
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Figure 8.2 The four classes of Parker outflow solutions for the solar wind.

1. u(r) is subsonic throughout the domain a < r < ∞. u(r) increases with r,
attains a maximum value around r = rc, and then decreases with r.

2. a unique solution for which u(r) increases monotonically with r, and u(rc) =

uc.

3. a unique solution for which u(r) decreases monotonically with r, and u(rc) =

uc.

4. u(r) is supersonic throughout the domain a < r < ∞. u(r) decreases with r,
attains a minimum value around r = rc, and then increases with r.

These four classes of solutions are illustrated in Figure 8.2.
Each of the classes of solutions described previously fits a different set of bound-

ary conditions at r = a and r → ∞. The physical acceptability of these solutions
depends on these boundary conditions. For example, both Class 3 and Class 4 solu-
tions can be ruled out as plausible models for the solar corona because they predict
supersonic flow at the base of the corona, which is not observed, and is also not
consistent with a static solar photosphere. Class 1 and Class 2 solutions remain ac-
ceptable models for the solar corona on the basis of their properties around r = a,
because they both predict subsonic flow in this region. However, the Class 1 and
Class 2 solutions behave quite differently as r → ∞, and the physical acceptability
of these two classes hinges on this difference.
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Equation (8.65) can be rearranged to give

du2

dr

(
1 −

u2
c

u2

)
=

4 u2
c

r

(
1 −

rc

r

)
, (8.70)

where use has been made of Equations (8.66) and (8.67). The previous expression
can be integrated to give(

u
uc

)2

− ln
(

u
uc

)2

= 4 ln
(

r
rc

)
+ 4

rc

r
+ C, (8.71)

where C is a constant of integration.
Let us consider the behavior of Class 1 solutions in the limit r → ∞. It is clear

from Figure 8.2 that, for Class 1 solutions, u/uc is less than unity and monotonically
decreasing as r → ∞. In the large-r limit, Equation (8.71) reduces to

ln
(

u
uc

)
' −2 ln

(
r
rc

)
, (8.72)

so that
u ∝

1
r2 . (8.73)

It follows from Equation (8.64) that the coronal density, ρ, approaches a finite, con-
stant value, ρ∞, as r → ∞. Thus, the Class 1 solutions yield a finite pressure,

p∞ =
2 ρ∞ T

mp
, (8.74)

at large r, which cannot be matched to the much smaller pressure of the interstellar
medium. Obviously, Class 1 solutions are unphysical.

Let us consider the behavior of the Class 2 solution in the limit r → ∞. It is
clear from Figure 8.2 that, for the Class 2 solution, u/uc is greater than unity and
monotonically increasing as r → ∞. In the large-r limit, Equation (8.71) reduces to(

u
uc

)2

' 4 ln
(

r
rc

)
, (8.75)

so that

u ' 2 uc

[
ln

(
r
rc

)]1/2

. (8.76)

It follows from Equation (8.64) that ρ → 0 as r → ∞. Thus, the Class 2 solution
yields p→ 0 at large r, and can, therefore, be matched to the low pressure interstellar
medium.

We conclude that the only solution to Equation (8.65) that is consistent with the
physical boundary conditions at r = a and r → ∞ is the Class 2 solution. This so-
lution predicts that the solar corona expands radially outward at relatively modest,
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Figure 8.3 Parker outflow solutions for the solar wind. Each curve is labelled by
the corresponding coronal temperature in degrees kelvin. The vertical dashed line
indicates the mean radius of the Earth’s orbit.

sub-sonic velocities close to the Sun, and gradually accelerates to supersonic veloci-
ties as it moves further away from the Sun. Parker termed this continuous, supersonic
expansion of the corona the “solar wind”.

Equation (8.71) can be rewritten(
u2

u2
c
− 1

)
− ln

(
u
uc

)2

= 4 ln
(

r
rc

)
+ 4

( rc

r
− 1

)
, (8.77)

where the constant C is determined by demanding that u = uc when r = rc. Note
that both uc and rc can be evaluated in terms of the coronal temperature, T , via Equa-
tions (8.67) and (8.68). Figure 8.3 shows u(r) calculated from Equation (8.77) for
various values of the coronal temperature. It can be seen that plausible values of T
(i.e., T ∼ 1–2 × 106 K) yield expansion speeds of several hundreds of kilometers
per second at 1 AU, which accords well with satellite observations. The critical sur-
face where the solar wind makes the transition from subsonic to supersonic flow is
predicted to lie a few solar radii away from the Sun (i.e., rc ∼ 5 R�, where R� is the
solar radius). Unfortunately, the Parker model’s prediction for the density of the solar
wind at the Earth is significantly too high compared to satellite observations. Conse-
quently, there have been many further developments of this model. In particular, the
unrealistic assumption that the solar wind plasma is isothermal has been relaxed, and
two-fluid effects have been incorporated into the analysis (Priest 1984).
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8.7 INTERPLANETARY MAGNETIC FIELD

Let us now investigate how the solar wind and the interplanetary magnetic field affect
one another.

The hot coronal plasma making up the solar wind possesses an extremely high
electrical conductivity. In such a plasma, we expect the concept of “frozen-in” mag-
netic field-lines, discussed in Section 8.3, to be applicable. The continuous flow of
coronal material into interplanetary space must, therefore, result in the transport of
the solar magnetic field into the interplanetary region. If the Sun did not rotate then
the resulting magnetic configuration would be very simple. The radial coronal expan-
sion considered previously (with the neglect of any magnetic forces) would produce
magnetic field-lines extending radially outward from the Sun.

Of course, the Sun does rotate, with a (latitude dependent) period of about 25
days.1 Because the solar photosphere is an excellent electrical conductor, the mag-
netic field at the base of the corona is frozen into the rotating frame of reference of the
Sun. A magnetic field-line starting from a given location on the surface of the Sun is
drawn out along the path followed by the element of the solar wind emanating from
that location. As before, let us suppose that the coronal expansion is purely radial
in a stationary frame of reference. Consider a spherical coordinate system (r, θ, φ)
that co-rotates with the Sun. Of course, the symmetry axis of the coordinate system
is assumed to coincide with the axis of the Sun’s rotation. In the rotating coordinate
system, the velocity components of the solar wind are written

ur = u, (8.78)

uθ = 0, (8.79)

uφ = −Ω r sin θ, (8.80)

where Ω = 2.7×10−6 rad sec−1 is the angular velocity of solar rotation (Yoder 1995).
The azimuthal velocity uφ is entirely due to the transformation to the rotating frame of
reference. The stream-lines of the flow satisfy the differential equation (Richardson
2019)

1
r sin θ

dr
dφ
'

ur

uφ
= −

u
Ω r sin θ

(8.81)

at constant θ. The stream-lines are also magnetic field-lines, so Equation (8.81) can
be regarded as the differential equation of a magnetic field-line. For radii, r, greater
than several times the critical radius, rc, the solar wind solution (8.77) predicts
that u(r) is almost constant. (See Figure 8.3.) Thus, for r � rc, it is reasonable to
write u(r) = us, where us is a constant. Equation (8.81) can then be integrated to give
the equation of a magnetic field-line,

r − r0 = −
us

Ω
(φ − φ0), (8.82)

where the field-line is assumed to pass through the point (r0, θ, φ0). Maxwell’s equa-
tion ∇ · B = 0, plus the assumption of a spherically symmetric magnetic field, easily

1To an observer orbiting with the Earth, the rotation period appears to be about 27 days.
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Figure 8.4 The interplanetary magnetic field in the ecliptic plane.

yield the following expressions for the components of the interplanetary magnetic
field:

Br(r, θ, φ) = B(r0, θ, φ0)
( r0

r

)2
, (8.83)

Bθ(r, θ, φ) = 0, (8.84)

Bφ(r, θ, φ) = −B(r0, θ, φ0)
Ω r0

us

r0

r
sin θ. (8.85)

Figure 8.4 illustrates the interplanetary magnetic field close to the ecliptic plane
(i.e., θ = π/2). The magnetic field-lines of the Sun are drawn into Archimedean
spirals by the solar rotation. Transformation to a stationary frame of reference gives
the same magnetic field configuration, with the addition of an electric field

E = −u × B = us Bφ eθ (8.86)

The latter field arises because the radial plasma flow is no longer parallel to magnetic
field-lines in the stationary frame.

The interplanetary magnetic field at 1 AU is observed to lie in the ecliptic plane,
and is directed at an angle of approximately 45◦ from the radial direction to the
Sun (Priest 1984). This is in basic agreement with the spiral configuration predicted
previously.



Magnetohydrodynamic Fluids � 213

The previous analysis is premised on the assumption that the interplanetary mag-
netic field is too weak to affect the coronal outflow, and is, therefore, passively con-
vected by the solar wind. In fact, this is only the case if the interplanetary magnetic
energy density, B2/(2 µ0), is much less that the kinetic energy density, ρ u2/2, of the
solar wind. Rearrangement yields the condition

u > VA, (8.87)

where VA is the Alfvén speed. It turns out that u ∼ 10 VA at 1 AU. On the other
hand, u � VA close to the base of the corona. In fact, the solar wind becomes super-
Alfvénic at a radius, denoted rA, which is typically 50 R�, or 1/4 of an astronomical
unit (Priest 1984). We conclude that the previous analysis is only valid well outside
the Alfvén radius: that is, in the region r � rA.

Well inside the Alfvén radius (i.e., in the region r � rA), the solar wind is too
weak to modify the structure of the solar magnetic field. In fact, in this region, we
expect the solar magnetic field to force the solar wind to co-rotate with the Sun. Ob-
serve that flux freezing is a two-way-street: if the energy density of the flow greatly
exceeds that of the magnetic field then the magnetic field is passively convected by
the flow, but if the energy density of the magnetic field greatly exceeds that of the
flow then the flow is forced to conform to the magnetic field.

The previous discussion leads us to the following, rather crude, picture of the
interaction of the solar wind and the interplanetary magnetic field. We expect the
interplanetary magnetic field to be the undistorted continuation of the Sun’s magnetic
field for r < rA. On the other hand, we expect the interplanetary field to be dragged
out into a spiral pattern for r > rA. Furthermore, we expect the Sun’s magnetic field
to impart a nonzero azimuthal velocity uφ(r) to the solar wind. In the ecliptic plane
(θ = π/2), we infer that

uφ = Ω r (8.88)

for r < rA, and
uφ = Ω rA

( rA

r

)
(8.89)

for r > rA. This corresponds to co-rotation with the Sun inside the Alfvén radius, and
outflow at constant angular velocity outside the Alfvén radius. We, therefore, expect
the solar wind at 1 AU to possess a small azimuthal velocity component. This is
indeed the case. In fact, the direction of the solar wind at 1 AU deviates from purely
radial outflow by about 1.5◦ (Priest 1984).

8.8 MASS AND ANGULAR MOMENTUM LOSS

Let us consider what impact the solar wind has on solar evolution. The most obvious
question is whether the mass loss due to the wind is actually significant. Using typical
measured values [i.e., a typical solar wind velocity and particle density at 1 AU of
500 km s−1 and 7× 106 m−3, respectively (Priest 1984)], the Sun is apparently losing
mass at a rate of 3 × 10−14 M� per year, where M� = 2 × 1030 kg is the solar mass
(Yoder 1995), implying a timescale for significant mass loss of 3×1013 years, or some
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6000 times longer than the estimated 5 × 109 year age of the Sun (Hansen, Kawaler,
and Trimble 2004). Clearly, the mass carried off by the solar wind has a negligible
effect on the Sun’s evolution. Note, however, that many stars in the universe exhibit
significant mass loss via stellar winds. This is particularly the case for late-type stars
(Mestel 2012).

Let us now consider the angular momentum carried off by the solar wind. An-
gular momentum loss is a crucially important topic in astrophysics, because only by
losing angular momentum can large, diffuse objects, such as interstellar gas clouds,
collapse under the influence of gravity to produce small, compact objects, such as
stars and proto-stars (Mestel 2012). Magnetic fields generally play a crucial role in
angular momentum loss. This is certainly the case for the solar wind, where the solar
magnetic field enforces co-rotation with the Sun out to the Alfvén radius, rA. Thus,
the angular momentum carried away by a particle of mass m is Ω r2

A m, rather than
ΩR2

� m. The angular momentum loss timescale is, therefore, shorter than the mass
loss timescale by a factor (R�/rA)2 ' 1/2500, making the angular momentum loss
timescale comparable to the solar lifetime. It is clear that magnetized stellar winds
represent a very important vehicle for angular momentum loss in the universe (Mes-
tel 2012). Let us investigate angular momentum loss via stellar winds in more detail.

Under the assumption of spherical symmetry and steady flow, the azimuthal mo-
mentum evolution equation for the solar wind, taking into account the influence of
the interplanetary magnetic field, is written (Richardson 2019)

ρ [(V · ∇)V]φ ≡ ρ
ur

r
d(r uφ)

dr
= (j × B)φ ≡

Br

µ0 r
d(r Bφ)

dr
. (8.90)

The constancy of the mass flux [see Equation (8.64)] and the 1/r2 dependence of Br

[see Equation (8.83)] permit the immediate integration of the previous equation to
give

r uφ −
r Br Bφ
µ0 ρ ur

= L, (8.91)

where L is the angular momentum per unit mass carried off by the solar wind. In the
presence of an azimuthal wind velocity, the magnetic field and velocity components
are related by an expression similar to Equation (8.81):

Br

Bφ
=

ur

uφ − Ω r sin θ
. (8.92)

The fundamental physics assumption underlying the previous expression is the ab-
sence of an electric field in the frame of reference co-rotating with the Sun. Using
Equation (8.92) to eliminate Bφ from Equation (8.91), we obtain (in the ecliptic plane,
where sin θ = 1)

r uφ =
L M2

A − Ω r2

M2
A − 1

, (8.93)

where

MA =

√
u2

r

B2
r/µ0 ρ

(8.94)
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is the radial Alfvén Mach number. The radial Alfvén Mach number is small near
the base of the corona, and about 10 at 1 AU: it passes through unity at the Alfvén
radius, rA, which is about 0.25 AU from the Sun. The zero denominator on the right-
hand side of Equation (8.93) at r = rA implies that uφ is finite and continuous only
if the numerator is also zero at the Alfvén radius. This condition then determines the
angular momentum content of the outflow via

L = Ω r2
A. (8.95)

Note that the angular momentum carried off by the solar wind is indeed equivalent to
that which would be carried off were coronal plasma to co-rotate with the Sun out to
the Alfvén radius, and subsequently outflow at constant angular velocity. Of course,
the solar wind does not actually rotate rigidly with the Sun in the region r < rA: much
of the angular momentum in this region is carried in the form of electromagnetic
stresses.

It is easily demonstrated that the quantity M2
A/(ur r2) is a constant (because Br ∝

r−2, and r2 ρ ur is constant), and can, therefore, be evaluated at r = rA to give

M2
A =

ur r2

ur A r2
A

, (8.96)

where ur A ≡ ur(rA). Equations (8.93), (8.95), and (8.96) can be combined to produce

uφ =
Ω r
ur A

ur A − ur

1 − M2
A

. (8.97)

In the limit r → ∞, we have MA � 1, so the previous expression yields

uφ → Ω rA

( rA

r

) (
1 −

ur A

ur

)
(8.98)

at large distances from the Sun. Recall, from Section 8.7, that if the coronal plasma
were to simply co-rotate with the Sun out to r = rA, and experience no torque beyond
this radius, then we would expect

uφ → Ω rA

( rA

r

)
(8.99)

at large distances from the Sun. The difference between the previous two expressions
is the factor 1 − ur A/ur, which is a correction for the angular momentum retained by
the magnetic field at large r.

The previous analysis presented was first incorporated into a quantitative coronal
expansion model by Weber and Davis (Weber and Davis 1967). The model of We-
ber and Davis is very complicated. For instance, the solar wind is required to flow
smoothly through no less than three critical points. These are associated with the
sound speed (as in Parker’s original model), the radial Alfvén speed, Br/

√
µ0 ρ, (as

previously described), and the total Alfvén speed, B/
√
µ0 ρ. Nevertheless, the sim-

plified analysis outlined in this section captures most of the essential features of the
outflow.
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8.9 MHD DYNAMO THEORY

Many stars, planets, and galaxies possess magnetic fields whose origins are not easily
explained. Even the “solid” planets could not possibly be sufficiently ferromagnetic
to account for their magnetism, because the temperatures of their interiors lie above
the Curie temperature at which permanent magnetism disappears (Reif 1965). It goes
without saying that stars and galaxies are not ferromagnetic. Magnetic fields cannot
be dismissed as transient phenomena that just happen to be present today. For in-
stance, paleomagnetism, the study of magnetic fields “fossilized” in rocks at the time
of their formation in the remote geological past, shows that the Earth’s magnetic field
has existed at much its present strength for at least the past 3×109 years (Dunlop and
Özdemir 2001; Ogg 2012). The problem is that, in the absence of an internal source
of electric currents, magnetic fields contained in a conducting body decay ohmically
on a timescale

τohm = µ0 σ L2, (8.100)

where σ is the typical electrical conductivity, and L is the typical lengthscale of the
body, and this decay timescale is generally very small compared to the inferred life-
times of astrophysical magnetic fields. For instance, the Earth contains a highly con-
ducting region: namely, its molten core, of radius L ∼ 3.5 × 106 m, and conductivity
σ ∼ 4 × 105 S m−1 (Yoder 1995). This yields an ohmic decay time for the terrestrial
magnetic field of only τohm ∼ 2 × 105 years, which is obviously far shorter than the
inferred lifetime of this field. Clearly, some process inside the Earth must be actively
maintaining the terrestrial magnetic field (Roberts and King 2013). Such a process
is conventionally termed a dynamo. Similar considerations lead us to postulate the
existence of dynamos acting inside stars and galaxies, in order to account for the per-
sistence of stellar and galactic magnetic fields over cosmological timescales (Mestel
2012).

The basic premise of dynamo theory is that all astrophysical bodies that contain
anomalously long-lived magnetic fields also contain convecting, highly conducting,
fluids (e.g., the Earth’s molten core, the ionized gas that makes up the Sun), and it
is the electric currents associated with the motions of these fluids that maintain the
observed magnetic fields. At first sight, this proposal, first made by Larmor in 1919
(Larmor 1919), sounds suspiciously like pulling yourself up by your own shoelaces.
However, there is really no conflict with the demands of energy conservation. The
magnetic energy irreversibly lost via ohmic heating is replenished at the rate (per
unit volume) V · (j×B): in other words, by the rate of work done against the Lorentz
force. The flow field, V, is assumed to be driven via thermal convention. If the flow is
sufficiently vigorous then it is, at least, plausible that the energy input to the magnetic
field can overcome the losses due to ohmic heating, thus permitting the field to persist
over timescales far longer than the characteristic ohmic decay time.

Paleomagnetic data from marine sediment cores shows that the Earth’s magnetic
field is quite variable, and actually reversed polarity about 700, 000 years ago (Dun-
lop and Özdemir 2001; Valet, Meynadier, and Guyodo 2005). In fact, more exten-
sive data shows that the Earth’s magnetic field reverses polarity about once every
ohmic decay timescale (i.e., a few times every million years) (Ogg 2012). The Sun’s
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magnetic field exhibits similar behavior, reversing polarity about once in every 11
years (Jones, Thompson, and Tobais 2010; Mestel 2012). An examination of this
type of data reveals that dynamo magnetic fields (and velocity fields) are essentially
chaotic in nature, exhibiting strong random variability superimposed on more regular
quasi-periodic oscillations.

A thorough investigation of dynamo theory would be a far too difficult and time
consuming task. Instead, we shall examine a far simpler version of this theory, known
as kinematic dynamo theory, in which the velocity field, V, is prescribed (Moffatt
1978; Krause and Rädler 1980). In order for this approach to be self-consistent, it
must be assumed that the magnetic field is sufficiently weak that it does not affect the
velocity field. Let us start from the MHD Ohm’s law, modified by resistivity:

E + V × B = η j. (8.101)

Here, the resistivity η is assumed to be a constant, for the sake of simplicity. Taking
the curl of the previous equation, and making use of Maxwell’s equations, we obtain

∂B
∂t
− ∇ × (V × B) =

η

µ0
∇2B. (8.102)

If the velocity field, V, is prescribed, and unaffected by the presence of the mag-
netic field, then the previous equation is essentially a linear eigenvalue equation for
the magnetic field, B. The question we wish to address is as follows. For what sort
of velocity fields, if any, does the previous equation possess solutions in which the
magnetic field grows exponentially in time? In trying to formulate an answer to this
question, we hope to learn what type of motion of an MHD fluid is capable of self-
generating a magnetic field.

8.10 HOMOPOLAR DISK DYNAMO

Some of the peculiarities of dynamo theory are well illustrated by the prototype ex-
ample of self-excited dynamo action, which is the homopolar disk dynamo. As il-
lustrated in Figure 8.5, this device consists of a conducting disk that rotates at some
angular frequency Ω about its axis under the action of an applied torque. A wire,
twisted about the axis in the manner shown, makes sliding contact with the disc at
A, and with the axis at B, and carries a current I(t). The magnetic field, B, associ-
ated with this current has a flux Φ = M I across the disc, where M is the mutual
inductance between the wire and the rim of the disc. The rotation of the disc in the
presence of this flux generates a radial electromotive force

Ω

2π
Φ =

Ω

2π
M I, (8.103)

because a radius of the disc cuts the magnetic flux Φ once every 2π/Ω seconds.
According to this simplistic description, the equation for I is written

L
dI
dt

+ R I =
M
2π

Ω I, (8.104)

where R is the total resistance of the circuit, and L is its self-inductance.
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Figure 8.5 The homopolar disk dynamo.

Suppose that the angular velocity Ω is maintained by suitable adjustment of the
driving torque. It follows that Equation (8.104) possesses an exponential solution
I(t) = I(0) exp(γ t), where

γ = L−1
( M
2π

Ω − R
)
. (8.105)

Clearly, we have exponential growth of I(t)—and, hence, of the magnetic field to
which it gives rise (i.e., we have dynamo action)—provided that

Ω >
2πR
M

: (8.106)

that is, provided that the disk rotates sufficiently rapidly. Note that the homopolar disk
dynamo depends for its success on its built-in axial asymmetry. If the disk rotates in
the opposite direction to that shown in Figure 8.5, then Ω < 0, and the electromo-
tive force generated by the rotation of the disk always acts to reduce I. In this case,
dynamo action is impossible (i.e., γ is always negative). This is a troubling obser-
vation, because most astrophysical objects, such as stars and planets, possess very
good axial symmetry. We conclude that if such bodies are to act as dynamos then
the asymmetry of their internal motions must somehow compensate for their lack of
built-in asymmetry. It is far from obvious how this is going to happen.

Incidentally, although the previous treatment of a homopolar disk dynamo (which
is the standard analysis found in most textbooks) is very appealing in its simplic-
ity, it cannot be entirely correct. Consider the limiting situation of a perfectly con-
ducting disk and wire, in which R = 0. On the one hand, Equation (8.105) yields
γ = MΩ/(2π L), so that we still have dynamo action. But, on the other hand, the rim
of the disk is a closed circuit embedded in a perfectly conducting medium, so the
flux freezing constraint requires that the flux, Φ, through this circuit must remain a
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constant. There is an obvious contradiction. The problem is that we have neglected
the currents that flow azimuthally in the disc: that is, the currents that control the dif-
fusion of magnetic flux across the rim of the disk. These currents become particularly
important in the limit R→ ∞.

The previous paradox can be resolved by supposing that the azimuthal current,
J(t), is constrained to flow around the rim of the disk (e.g., by a suitable distribution
of radial insulating strips). In this case, the fluxes through the I and J circuits are

Φ1 = L I + M J, (8.107)

Φ2 = M I + L′ J, (8.108)

and the equations governing the current flow become

dΦ1

dt
=
Ω

2π
Φ2 − R I, (8.109)

dΦ2

dt
= −R′ J, (8.110)

where R′, and L′ refer to the J circuit. Let us search for exponential solutions, (I, J) ∝
exp(γ t), of the previous system of equations. It is easily demonstrated that

γ =
−(L R′ + L′ R) ±

√
(L R′ + L′ R)2 + 4 R′ (L L′ − M2) (MΩ/2π − R)

2 (L L′ − M2)
. (8.111)

Recall the standard result in electromagnetic theory that L L′ > M2 for two nonco-
incident circuits (Jackson 1998). It is clear, from the previous expression, that the
condition for dynamo action (i.e., γ > 0) is

Ω >
2πR
M

, (8.112)

as before. Note, however, that γ → 0 as R′ → 0. In other words, if the rotating
disk is a perfect conductor then dynamo action is impossible. The previous system
of equations can be transformed into the well-known Lorenz system, which exhibits
chaotic behavior in certain parameter regimes (Knobloch 1981). It is noteworthy that
this simplest prototype dynamo system already contains the seeds of chaos (provided
that the formulation is self-consistent).

The previous discussion implies that, while dynamo action requires the resis-
tance, R, of the circuit to be low, we lose dynamo action altogether if we go to the
perfectly conducting limit, R → 0, because magnetic fields are unable to diffuse
into the region in which magnetic induction is operating. Thus, an efficient dynamo
requires a conductivity that is large, but not too large.

8.11 SLOW AND FAST DYNAMOS

Let us search for solutions of the MHD kinematic dynamo equation,

∂B
∂t

= ∇ × (V × B) +
η

µ0
∇2B, (8.113)
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for a prescribed steady-state velocity field, V(r), subject to certain practical con-
straints. First, we require a self-contained solution; in other words, a solution in
which the magnetic field is maintained by the motion of the MHD fluid, rather than
by currents at infinity. This suggests that V, B → 0 as r → ∞. Second, we require
an exponentially growing solution: that is, a solution for which B ∝ exp(γ t), where
γ > 0.

In most MHD fluids that occur in astrophysical contexts, the resistivity, η, is ex-
tremely small. Let us consider the perfectly conducting limit, η → 0. In this limit,
Vainshtein and Zel’dovich introduced an important distinction between two funda-
mentally different classes of dynamo solution (Vainshtein and Zel’dovich 1972). Sup-
pose that we solve the eigenvalue equation (8.113) to obtain the growth-rate, γ, of
the magnetic field in the limit η→ 0. We expect that

lim
η→0

γ ∝ ηα, (8.114)

where 0 ≤ α ≤ 1. There are two possibilities. Either α > 0, in which case the
growth-rate depends on the resistivity; or α = 0, in which case the growth-rate is
independent of the resistivity. The former case is termed a slow dynamo, whereas
the latter case is termed a fast dynamo. By definition, slow dynamos are unable to
operate in the perfectly conducting limit, because γ → 0 as η → 0. On the other
hand, fast dynamos can, in principle, operate when η = 0.

It is clear, from the discussion in the previous section, that a homopolar disk
dynamo is an example of a slow dynamo. In fact, it is easily seen that any dynamo
that depends on the motion of a rigid conductor for its operation is bound to be a slow
dynamo—in the perfectly conducting limit, the magnetic flux linking the conductor
could never change, so there would be no magnetic induction. So, why do we believe
that fast dynamo action is even a possibility for an MHD fluid? The answer, of course,
is that an MHD fluid is a nonrigid body, and, thus, its motion possesses degrees of
freedom not accessible to rigid conductors.

We know that in the perfectly conducting limit (η → 0) magnetic field-lines are
frozen into an MHD fluid. If the motion is incompressible (i.e., ∇ · V = 0) then the
stretching of field-lines implies a proportionate intensification of the field-strength.
The simplest heuristic fast dynamo, first described by Vainshtein and Zel’dovich, is
based on this effect (Vainshtein and Zel’dovich 1972). As illustrated in Figure 8.6, a
magnetic flux-tube can be doubled in intensity by taking it around a stretch-twist-fold
cycle. The doubling time for this process clearly does not depend on the resistivity—
in this sense, the dynamo is a fast dynamo. However, under repeated application of
the cycle, the magnetic field develops increasingly fine-scale structure. In fact, in the
limit η→ 0, both the V and B fields eventually become chaotic and nondifferentiable.
A little resistivity is always required to smooth out the fields on small lengthscales.
Even in this case, the fields remain chaotic.

At present, the physical existence of fast dynamos has not been conclusively
established, because most of the literature on this subject is based on mathematical
paradigms rather than actual solutions of the dynamo equation (Childress and Gilbert
1995). It should be noted, however, that the need for fast dynamo solutions is fairly
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stretch twist fold

Figure 8.6 The stretch-twist-fold cycle of a fast dynamo.

acute, especially in stellar dynamo theory. For instance, consider the Sun. The ohmic
decay time for the Sun is about 1012 years, whereas the reversal time for the so-
lar magnetic field is only 11 years (Mestel 2012). It is obviously a little difficult to
believe that resistivity is playing any significant role in the solar dynamo.

In the following, we shall restrict our analysis to slow dynamos, which un-
doubtably exist in nature, and which are characterized by nonchaotic V and B fields.

8.12 COWLING ANTI-DYNAMO THEOREM

One of the most important results in slow, kinematic dynamo theory is credited to
Cowling (Cowling 1934; Cowling 1957b). The so-called Cowling anti-dynamo the-
orem states that:

An axisymmetric magnetic field cannot be maintained via dynamo
action.

Let us attempt to prove this proposition.
We adopt standard cylindrical coordinates: ($, θ, z). The system is assumed to

possess axial symmetry, so that ∂/∂θ ≡ 0. For the sake of simplicity, the plasma flow
is assumed to be incompressible, which implies that ∇ · V = 0.

It is convenient to split the magnetic and velocity fields into poloidal and toroidal
components:

B = Bp + Bt, (8.115)

V = Vp + Vt. (8.116)

Here, a “poloidal” vector only possesses nonzero $- and z-components, whereas a
“toroidal” vector only possesses a nonzero θ-component.

The poloidal components of the magnetic and velocity fields are written
(Richardson 2019),

Bp = ∇ ×

(
ψ

$
eθ

)
≡
∇ψ × eθ
$

, (8.117)

Vp = ∇ ×

(
φ

$
eθ

)
≡
∇φ × eθ
$

, (8.118)
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where ψ = ψ($, z, t) and φ = φ($, z, t). The toroidal components are given by

Bt = Bt($, z, t) eθ, (8.119)

Vt = Vt($, z, t) eθ. (8.120)

Note that by writing the B and V fields in the previous form we ensure that the
constraints ∇ · B = 0 and ∇ · V = 0 are automatically satisfied. Note, further, that
because B · ∇ψ = 0 and V · ∇φ = 0, we can regard ψ and φ as stream-functions for
the magnetic and velocity fields, respectively.

The condition for the magnetic field to be maintained by dynamo currents, rather
than by currents at infinity, is

ψ→
1
r

as r → ∞, (8.121)

where r = ($2 + z2)1/2. We also require the flow stream-function, φ, to remain
bounded as r → ∞.

Consider the MHD Ohm’s law for a resistive plasma:

E + V × B = η j. (8.122)

Taking the toroidal component of this equation, we obtain

Et + (Vp × Bp) · eθ = η jt. (8.123)

It is easily demonstrated from the Faraday-Maxwell equation that

Et = −
1
$

∂ψ

∂t
. (8.124)

Furthermore,

(Vp × Bp) · eθ =
(∇φ × ∇ψ) · eθ

$2 =
1
$2

(
∂ψ

∂$

∂φ

∂z
−
∂φ

∂$

∂ψ

∂z

)
, (8.125)

and (Richardson 2019)

µ0 jt = ∇ × Bp · eθ = −

[
∇2

(
ψ

$

)
−

ψ

$3

]
= −

1
$

(
∂2ψ

∂$2 −
1
$

∂ψ

∂$
+
∂2ψ

∂z2

)
. (8.126)

Thus, Equation (8.123) reduces to

∂ψ

∂t
−

1
$

(
∂ψ

∂$

∂φ

∂z
−
∂φ

∂$

∂ψ

∂z

)
=

η

µ0

(
∂2ψ

∂$2 −
1
$

∂ψ

∂$
+
∂2ψ

∂z2

)
. (8.127)

Multiplying the previous equation by ψ and integrating over all space, we obtain

1
2

d
dt

∫
ψ2 dV −

∫ ∫
2πψ

(
∂ψ

∂$

∂φ

∂z
−
∂φ

∂$

∂ψ

∂z

)
d$ dz

=
η

µ0

∫ ∫
2π$ψ

(
∂2ψ

∂$2 −
1
$

∂ψ

∂$
+
∂2ψ

∂z2

)
d$ dz. (8.128)
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The second term on the left-hand side of the previous expression can be integrated
by parts to give

−

∫ ∫
2π

[
−φ

∂

∂z

(
ψ
∂ψ

∂$

)
+ φ

∂

∂$

(
ψ
∂ψ

∂z

)]
d$ dz = 0, (8.129)

where surface terms have been neglected, in accordance with Equation (8.121). Like-
wise, the term on the right-hand side of Equation (8.128) can be integrated by parts
to give

η

µ0

∫ ∫
2π

−∂($ψ)
∂$

∂ψ

∂$
−$

(
∂ψ

∂z

)2 d$ dz = −
η

µ0

∫ ∫
2π$

( ∂ψ
∂$

)2

+

(
∂ψ

∂z

)2 d$ dz.

(8.130)

Thus, Equation (8.128) reduces to

d
dt

∫
ψ2 dV = −2

η

µ0

∫
|∇ψ|2 dV ≤ 0. (8.131)

It is clear, from the previous expression, that the poloidal stream-function, ψ—and,
hence, the poloidal magnetic field, Bp—decays to zero under the influence of resis-
tivity. We conclude that the poloidal magnetic field cannot be maintained via dynamo
action.

Of course, we have not ruled out the possibility that the toroidal magnetic field
can be maintained via dynamo action. In the absence of a poloidal field, the curl of
the poloidal component of Equation (8.122) yields

−
∂Bt

∂t
+ ∇ × (Vp × Bt) = η∇ × jp, (8.132)

which reduces to

−
∂Bt

∂t
+ ∇ × (Vp × Bt) · eθ = −

η

µ0
∇2(Bt eθ) · eθ. (8.133)

Now (Richardson 2019),

∇2(Bt eθ) · eθ =
∂2Bt

∂$2 +
1
$

∂Bt

∂$
+
∂2Bt

∂z2 −
Bt

$2 , (8.134)

and (Richardson 2019)

∇ × (Vp × Bt) · eθ =
∂

∂$

(Bt

$

)
∂φ

∂z
−
∂

∂z

(Bt

$

)
∂φ

∂$
. (8.135)

Thus, Equation (8.133) yields

∂χ

∂t
−

1
$

(
∂χ

∂$

∂φ

∂z
−
∂φ

∂$

∂χ

∂z

)
=

η

µ0

(
∂2χ

∂$2 +
3
$

∂χ

∂$
+
∂2χ

∂z2

)
, (8.136)

where
Bt = $χ. (8.137)
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Multiply Equation (8.136) by χ, integrating over all space, and then integrating
by parts, we obtain

d
dt

∫
χ2 dV = −2

η

µ0

∫
|∇χ|2 dV ≤ 0. (8.138)

It is clear, from this equation, that χ—and, hence, the toroidal magnetic field, Bt—
decays to zero under the influence of resistivity. We conclude that no axisymmetric
magnetic field—either poloidal or toroidal—can be maintained by dynamo action,
which proves Cowling’s theorem.

Cowling’s theorem is the earliest, and most significant, of a number of anti-
dynamo theorems that severely restrict the types of magnetic fields that can be main-
tained via dynamo action. For instance, it is possible to prove that a two-dimensional
magnetic field cannot be maintained by dynamo action (Moffatt 1978). Here, “two-
dimensional” implies that in some Cartesian coordinate system, (x, y, z), the mag-
netic field is independent of z. The suite of anti-dynamo theorems can be summed up
by saying that successful dynamos possess a rather low degree of symmetry.

8.13 PONOMARENKO DYNAMO

The simplest known kinematic dynamo is that of Ponomarenko (Ponomarenko
1973). Consider a conducting fluid of resistivity η that fills all space. The motion
of the fluid is confined to a cylinder of radius a. Adopting standard cylindrical coor-
dinates (r, θ, z) aligned with this cylinder, the flow field is written

V =

{
(0, rΩ, U) for r ≤ a
0 for r > a

, (8.139)

where Ω and U are constants. Note that the flow is incompressible. In other words,
∇ · V = 0.

The MHD kinematic dynamo equation, (8.113), can be written

∂B
∂t

= (B · ∇) V − (V · ∇) B +
η

µ0
∇2B, (8.140)

where use has been made of ∇ · B = ∇ · V = 0. Let us search for solutions to this
equation of the form

B(r, θ, z, t) = B(r) exp[ i (m θ − k z) + γ t]. (8.141)

The r- and θ-components of Equation (8.140) are written (Richardson 2019)

γ Br = −i (mΩ − k U) Br

+
η

µ0

[
d2Br

dr2 +
1
r

dBr

dr
−

(m2 + k2r2 + 1) Br

r2 −
i 2 m Bθ

r2

]
, (8.142)
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and

γ Bθ = r
dΩ
dr

Br − i (mΩ − k U) Bθ

+
η

µ0

[
d2Bθ
dr2 +

1
r

dBθ
dr
−

(m2 + k2r2 + 1) Bθ
r2 +

i 2 m Br

r2

]
, (8.143)

respectively. In general, the term involving dΩ/dr is zero. In fact, this term is only
included in the analysis to enable us to evaluate the correct matching conditions at
r = a. We do not need to write the z-component of Equation (8.140), because Bz can
be obtained more directly from Br and Bθ via the constraint ∇ · B = 0.

Let

B± = Br ± i Bθ, (8.144)

y =
r
a
, (8.145)

τR =
µ0 a2

η
, (8.146)

q2 = k2 a2 + γ τR + i (mΩ − k U) τR, (8.147)

s2 = k2 a2 + γ τR. (8.148)

Here, τR is the typical time required for magnetic flux to diffuse a distance a under
the action of resistivity. Equations (8.142)–(8.148) can be combined to give

y2 d2B±
dy2 + y

dB±
dy
−

[
(m ± 1)2 + q2 y2

]
B± = 0 (8.149)

for y ≤ 1, and

y2 d2B±
dy2 + y

dB±
dy
−

[
(m ± 1)2 + s2 y2

]
B± = 0 (8.150)

for y > 1. The previous equations are modified Bessel’s equations of order m ± 1
(Abramowitz and Stegun 1965). Thus, the physical solutions of Equations (8.149)
and (8.150) that are well behaved as y→ 0 and y→ ∞ can be written

B±(y) = C±
Im±1(q y)
Im±1(q)

(8.151)

for y ≤ 1, and

B±(y) = D±
Km±1(s y)
Km±1(s)

(8.152)

for y > 1. Here, C± and D± are arbitrary constants. Note that the arguments of q and
s are both constrained to lie in the range −π/2 to +π/2.

The first matching condition at y = 1 is the continuity of B±, which yields

C± = D±. (8.153)
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The second matching condition is obtained by integrating Equation (8.143) from
r = a− δ to r = a− δ, where δ is an infinitesimal quantity, and making use of the fact
that the angular velocity Ω jumps discontinuously to zero at r = a. It follows that

aΩ Br =
η

µ0

[
dBθ
dr

]r=a+

r=a−

. (8.154)

Furthermore, integration of Equation (8.142) tells us that dBr/dr is continuous at
r = a. We can combine this information to give the matching condition[

dB±
dy

]y=1+

y=1−

= ±iΩτR

(B+ + B−
2

)
. (8.155)

Equations (8.151)–(8.155) yield the dispersion relation

G+ G− =
i
2
ΩτR (G+ −G−), (8.156)

where

G± = q
I′m±1(q)
Im±1(q)

− s
K′m±1(s)
Km±1(s)

. (8.157)

Here, ′ denotes a derivative with respect to argument.
Unfortunately, despite the fact that we are investigating the simplest known kine-

matic dynamo, the dispersion relation (8.156) is sufficiently complicated that it can
only be solved numerically. We can simplify matters considerably taking the limit
|q|, |s| � 1, which corresponds to that of small wavelength (i.e., k a � 1). The large
argument asymptotic behavior of the Bessel functions is specified by (Abramowitz
and Stegun 1965) √

2 z
π

Km(z) = e−z
[
1 +

4 m2 − 1
8 z

+ O

(
1
z2

)]
, (8.158)

√
2π z Im(z) = e+z

[
1 −

4 m2 − 1
8 z

+ O

(
1
z2

)]
, (8.159)

where | arg(z)| < π/2. It follows that

G± = q + s +

(
m2

2
± m +

3
8

) (
1
q

+
1
s

)
+ O

(
1
q2 +

1
s2

)
. (8.160)

Thus, the dispersion relation (8.156) reduces to

(q + s) q s = i mΩτR, (8.161)

where | arg(q)|, | arg(s)| < π/2.
In the limit µ→ 0, where

µ = (mΩ − k U) τR, (8.162)
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which corresponds to (V · ∇) B→ 0, the simplified dispersion relation (8.161) can be
solved to give

γ τR ' e i π/3
(

mΩτR

2

)2/3

− k2 a2 − i
µ

2
. (8.163)

Dynamo behavior [i.e., Re(γ) > 0] takes place when

ΩτR >
25/2 (k a)3

m
. (8.164)

Observe that Im(γ) , 0, implying that the dynamo mode oscillates, or rotates, as
well as growing exponentially in time. The dynamo generated magnetic field is
both nonaxisymmetric [note that dynamo activity is impossible, according to Equa-
tion (8.163), if m = 0] and three-dimensional, and is, thus, not subject to either of the
anti-dynamo theorems mentioned in the preceding section.

It is clear, from Equation (8.164), that dynamo action occurs whenever the flow
is made sufficiently rapid. But, what is the minimum amount of flow needed to give
rise to dynamo action? In order to answer this question, we have to solve the full
dispersion relation, (8.156), for various values of m and k, in order to find the dy-
namo mode that grows exponentially in time for the smallest values of Ω and U. It is
conventional to parameterize the flow in terms of the magnetic Reynolds number,

S =
τR

τH
, (8.165)

where
τH =

L
V

(8.166)

is the typical timescale for convective motion across the system. Here, V is a typ-
ical flow velocity, and L is the characteristic lengthscale of the system. Taking
V = |V(a)| = (Ω2 a2 + U2)1/2, and L = a, we have

S =
τR (Ω2 a2 + U2)1/2

a
(8.167)

for the Ponomarenko dynamo. The critical value of the Reynolds number above
which dynamo action occurs is found to be (Ponomarenko 1973)

Sc = 17.7. (8.168)

The most unstable dynamo mode is characterized by m = 1, U/(Ω a) = 1.3, k a =

0.39, and Im(γ) τR = 0.41. As the magnetic Reynolds number, S , is increased above
the critical value, S c, other dynamo modes are eventually destabilized.

In 2000, the Ponomarenko dynamo was realized experimentally by means of a
tall cylinder filled with liquid sodium in which helical flow was excited by a propeller
(Gailitis, et al. 2000). More information on laboratory dynamo experiments can be
found in Verhille et al. (2009).
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8.14 MHD SHOCKS

Consider a subsonic disturbance moving through a conventional neutral fluid. As is
well known, sound waves propagating ahead of the disturbance give advance warning
of its arrival, and, thereby, allow the response of the fluid to be both smooth and
adiabatic. Now, consider a supersonic distrurbance. In this case, sound waves are
unable to propagate ahead of the disturbance, and so there is no advance warning of
its arrival, and, consequently, the fluid response is sharp and nonadiabatic. This type
of response is generally known as a shock (Fitzpatrick 2017).

Let us investigate shocks in MHD fluids. Because information in such fluids is
carried via three different waves—namely, fast, or compressional-Alfvén, waves;
intermediate, or shear-Alfvén, waves; and slow, or magnetosonic, waves (see Sec-
tion 8.4)—we might expect MHD fluids to support three different types of shock, cor-
responding to disturbances traveling faster than each of the aforementioned waves.
This is indeed the case.

In general, a shock propagating through an MHD fluid produces a significant dif-
ference in plasma properties on either side of the shock front. The thickness of the
front is determined by a balance between convective and dissipative effects. How-
ever, dissipative effects in high temperature plasmas are only comparable to convec-
tive effects when the spatial gradients in plasma variables become extremely large.
Hence, MHD shocks in such plasmas tend to be extremely narrow, and are well ap-
proximated as discontinuous changes in plasma parameters. The MHD equations,
combined with Maxwell’s equations, can be integrated across a shock to give a set of
jump conditions that relate plasma properties on each side of the shock front. If the
shock is sufficiently narrow then these relations become independent of its detailed
structure. Let us derive the jump conditions for a narrow, planar, steady-state, MHD
shock.

Maxwell’s equations, and the MHD equations, (8.1)–(8.4), can be combined and
written in the following convenient form (Boyd and Sanderson 2003):

∇ · B = 0, (8.169)

∂B
∂t
− ∇ × (V × B) = 0, (8.170)

∂ρ

∂t
+ ∇ · (ρV) = 0, (8.171)

∂(ρV)
∂t

+ ∇ · T = 0, (8.172)

∂U
∂t

+ ∇ · u = 0, (8.173)

where

T = ρV V +

(
p +

B2

2 µ0

)
I −

B B
µ0

(8.174)

is the total (i.e., including electromagnetic, as well as plasma, contributions) stress
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Figure 8.7 A planar MHD shock.

tensor, I the identity tensor,

U =
1
2
ρV2 +

p
Γ − 1

+
B2

2 µ0
(8.175)

the total energy density, and

u =

(
1
2
ρV2 +

Γ

Γ − 1
p
)

V +
B × (V × B)

µ0
(8.176)

the total energy flux density.
Let us transform into the rest frame of the shock. Suppose that the shock front

coincides with the y-z plane. Furthermore, let the regions of the plasma upstream and
downstream of the shock, which are termed regions 1 and 2, respectively, be spatially
uniform and nontime-varying. It follows that ∂/∂t = ∂/∂y = ∂/∂z = 0. Moreover,
∂/∂x = 0, except in the immediate vicinity of the shock. Finally, let the velocity and
magnetic fields upstream and downstream of the shock all lie in the x-y plane. The
situation under discussion is illustrated in Figure 8.7. Here, ρ1, p1, V1, and B1 are the
upstream mass density, pressure, velocity, and magnetic field, respectively, whereas
ρ2, p2, V2, and B2 are the corresponding downstream quantities. In the immediate
vicinity of the shock, Equations (8.169)–(8.173) reduce to

dBx

dx
= 0,

d
dx

(Vx By − Vy Bx) = 0, (8.177)

d(ρVx)
dx

= 0,
dTxx

dx
= 0, (8.178)

dTxy

dx
= 0,

dux

dx
= 0. (8.179)
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Integration across the shock yields the desired jump conditions:

[Bx]2
1 = 0, (8.180)

[Vx By − Vy Bx]2
1 = 0, (8.181)

[ρVx]2
1 = 0, (8.182)

[ρV2
x + p + B2

y/2 µ0]2
1 = 0, (8.183)

[ρVx Vy − Bx By/µ0]2
1 = 0, (8.184)[

1
2
ρV2 Vx +

Γ

Γ − 1
p Vx +

By (Vx By − Vy Bx)
µ0

]2

1
= 0, (8.185)

where [A]2
1 ≡ A2 − A1. These relations are known as the Rankine-Hugoniot relations

for MHD (Boyd and Sanderson 2003). Assuming that all of the upstream plasma
parameters are known, there are six unknown parameters in the problem—namely,
Bx 2, By 2, Vx 2, Vy 2, ρ2, and p2. These six unknowns are fully determined by the
six jump conditions. Unfortunately, the general case is very complicated. So, before
tackling it, let us examine a couple of relatively simple special cases.

8.15 PARALLEL MHD SHOCKS

The first special case is the so-called parallel MHD shock, in which both the up-
stream and downstream plasma flows are parallel to the magnetic field, as well as
perpendicular to the shock front. In other words,

V1 = (V1, 0, 0), V2 = (V2, 0, 0), (8.186)

B1 = (B1, 0, 0), B2 = (B2, 0, 0). (8.187)

Substitution into the general jump conditions (8.180)–(8.185) yields

B2

B1
= 1,

ρ2

ρ1
= r, (8.188)

V2

V1
= r−1,

p2

p1
= R, (8.189)

with

r =
(Γ + 1) M2

1

2 + (Γ − 1) M2
1

, (8.190)

R = 1 + Γ M2
1 (1 − r−1) =

(Γ + 1) r − (Γ − 1)
(Γ + 1) − (Γ − 1) r

. (8.191)

Here, M1 = V1/VS 1, where VS 1 = (Γ p1/ρ1)1/2 is the upstream sound speed. Thus,
the upstream flow is supersonic if M1 > 1, and subsonic if M1 < 1. Incidentally, as is
clear from the previous expressions, a parallel shock is unaffected by the presence of
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a magnetic field. In fact, this type of shock is identical to that which occurs in neutral
fluids, and is, therefore, usually called a hydrodynamic shock (Fitzpatrick 2017).

It is easily seen from Equations (8.188)–(8.191) that there is no shock (i.e., no
jump in plasma parameters across the shock front) when the upstream flow is exactly
sonic: that is, when M1 = 1. In other words, r = R = 1 when M1 = 1. However, if
M1 , 1 then the upstream and downstream plasma parameters become different (i.e.,
r , 1, R , 1), and a true shock develops. In fact, it can be demonstrated that

Γ − 1
Γ + 1

≤ r ≤
Γ + 1
Γ − 1

, (8.192)

0 ≤ R ≤ ∞, (8.193)

Γ − 1
2Γ

≤ M2
1 ≤ ∞. (8.194)

Note that the upper and lower limits in the previous inequalities are all attained
simultaneously.

The previous discussion seems to imply that a parallel shock can be either com-
pressive (i.e., r > 1) or expansive (i.e., r < 1). However, there is one additional
physics principle that needs to be factored into our analysis—namely, the second law
of thermodynamics. This law states that the entropy of a closed system can sponta-
neously increase, but can never spontaneously decrease (Reif 1965). Now, in general,
the entropy per particle is different on either side of a hydrodynamic shock front. Ac-
cordingly, the second law of thermodynamics mandates that the downstream entropy
must exceed the upstream entropy, so as to ensure that the shock generates a net in-
crease, rather than a net decrease, in the overall entropy of the system, as the plasma
flows through it.

The (suitably normalized) entropy per particle of an ideal plasma takes the form
[see Equation (4.51)]

S = ln
(

p
ρΓ

)
. (8.195)

Hence, the difference between the upstream and downstream entropies is

[S ]2
1 = ln R − Γ ln r. (8.196)

Now, using (8.191),

r
d[S ]2

1

dr
=

r
R

dR
dr
− Γ =

Γ (Γ2 − 1) (r − 1)2

[(Γ + 1) r − (Γ − 1)] [(Γ + 1) − (Γ − 1) r]
. (8.197)

Furthermore, it is easily seen from Equations (8.192)–(8.194) that d[S ]2
1/dr ≥ 0 in all

situations of physical interest. However, [S ]2
1 = 0 when r = 1, because, in this case,

there is no discontinuity in plasma parameters across the shock front. We conclude
that [S ]2

1 < 0 for r < 1, and [S ]2
1 > 0 for r > 1. It follows that the second law of

thermodynamics requires hydrodynamic shocks to be compressive: that is, r > 1. In
other words, the plasma density must always increase when a shock front is crossed
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in the direction of the relative plasma flow. It turns out that this is a general rule that
applies to all three types of MHD shock (Boyd and Sanderson 2003).

The upstream Mach number, M1, is a good measure of shock strength: that is,
if M1 = 1 then there is no shock, if M1 − 1 � 1 then the shock is weak, and if
M1 � 1 then the shock is strong. We can define an analogous downstream Mach
number, M2 = V2/(Γ p2/ρ2)1/2. It is easily demonstrated from the jump conditions
that if M1 > 1 then M2 < 1. In other words, in the shock rest frame, the shock is
associated with an irreversible (because the entropy suddenly increases) transition
from supersonic to subsonic flow. Note that r ≡ ρ2/ρ1 → (Γ + 1)/(Γ − 1), whereas
R ≡ p2/p1 → ∞, in the limit M1 → ∞. In other words, as the shock strength
increases, the compression ratio, r, asymptotes to a finite value, whereas the pressure
ratio, R, increases without limit. For a conventional plasma with Γ = 5/3, the limiting
value of the compression ratio is 4: in other words, the downstream density can never
be more than four times the upstream density. We conclude that, in the strong shock
limit, M1 � 1, the large jump in the plasma pressure across the shock front must be
predominately a consequence of a large jump in the plasma temperature, rather than
the plasma density. In fact, Equations (8.190) and (8.191) imply that

T2

T1
≡

R
r
→

2Γ (Γ − 1) M2
1

(Γ + 1)2 � 1 (8.198)

as M1 → ∞. Thus, a strong parallel, or hydrodynamic, shock is associated with
intense plasma heating.

As we have seen, the condition for the existence of a hydrodynamic shock is
M1 > 1, or V1 > VS 1. In other words, in the shock frame, the upstream plasma
velocity, V1, must be supersonic. However, by Galilean invariance, V1 can also be
interpreted as the propagation velocity of the shock through an initially stationary
plasma. It follows that, in a stationary plasma, a parallel, or hydrodynamic, shock
propagates along the magnetic field with a supersonic velocity.

8.16 PERPENDICULAR MHD SHOCKS

The second special case is the so-called perpendicular MHD shock in which both the
upstream and downstream plasma flows are perpendicular to the magnetic field, as
well as the shock front. In other words,

V1 = (V1, 0, 0), V2 = (V2, 0, 0), (8.199)

B1 = (0, B1, 0), B2 = (0, B2, 0). (8.200)

Substitution into the general jump conditions (8.180)–(8.185) yields

B2

B1
= r,

ρ2

ρ1
= r, (8.201)

V2

V1
= r−1,

p2

p1
= R, (8.202)
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where
R = 1 + Γ M2

1 (1 − r−1) + β−1
1 (1 − r2), (8.203)

and r is a real positive root of the quadratic

F(r) = 2 (2−Γ) r2 +Γ
[
2 (1 + β1) + (Γ − 1) β1 M2

1

]
r−Γ (Γ+ 1) β1 M2

1 = 0. (8.204)

Here, β1 = 2 µ0 p1/B2
1.

If r1 and r2 are the two roots of Equation (8.204) then

r1 r2 = −
Γ (Γ + 1) β1 M2

1

2 (2 − Γ)
. (8.205)

Assuming that Γ < 2, we conclude that one of the roots is negative, and, hence, that
Equation (8.204) only possesses one physical solution: that is, there is only one type
of MHD shock that is consistent with Equations (8.199) and (8.200). Now, it is easily
demonstrated that F(0) < 0 and F[(Γ + 1)/(Γ − 1)] > 0. Hence, the physical root lies
between r = 0 and r = (Γ + 1)/(Γ − 1).

Using similar analysis to that employed in the previous section, it can be demon-
strated that the second law of thermodynamics requires a perpendicular shock to be
compressive: that is, r > 1 (Boyd and Sanderson 2003). It follows that a physical
solution is only obtained when F(1) < 0, which reduces to

M2
1 > 1 +

2
Γ β1

. (8.206)

This condition can also be written

V2
1 > V2

S 1 + V2
A 1, (8.207)

where VA 1 = B1/(µ0 ρ1)1/2 is the upstream Alfvén velocity. Now, V+ 1 = (V2
S 1 +

V2
A 1)1/2 can be recognized as the velocity of a fast wave propagating perpendicular

to the magnetic field. (See Section 8.4.) Thus, the condition for the existence of a
perpendicular shock is that the relative upstream plasma velocity must be greater
than the upstream fast wave velocity. Incidentally, it is easily demonstrated that if
this is the case then the downstream plasma velocity is less than the downstream
fast wave velocity. We can also deduce that, in a stationary plasma, a perpendicular
shock propagates across the magnetic field with a velocity that exceeds the fast wave
velocity.

In the strong shock limit, M1 � 1, Equations (8.203) and (8.204) become iden-
tical to Equations (8.190) and (8.191). Hence, a strong perpendicular shock is very
similar to a strong hydrodynamic shock (except that the former shock propagates
perpendicular, whereas the latter shock propagates parallel, to the magnetic field). In
particular, just like a hydrodynamic shock, a perpendicular shock cannot compress
the density by more than a factor (Γ + 1)/(Γ − 1). However, according to Equa-
tion (8.201), a perpendicular shock compresses the magnetic field by the same factor
that it compresses the plasma density. It follows that there is also an upper limit to
the factor by which a perpendicular shock can compress the magnetic field.
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8.17 OBLIQUE MHD SHOCKS

Let us now consider the general case in which the plasma velocities and the magnetic
fields on each side of the shock are neither parallel nor perpendicular to the shock
front. It is convenient to transform into the so-called de Hoffmann-Teller frame in
which |V1 × B1| = 0, or

Vx 1 By 1 − Vy 1 Bx 1 = 0. (8.208)

In other words, it is convenient to transform to a frame that moves at the local E × B
velocity of the plasma. It immediately follows from the jump condition (8.181) that

Vx 2 By 2 − Vy 2 Bx 2 = 0, (8.209)

or |V2 × B2| = 0. Thus, in the de Hoffmann-Teller frame, the upstream plasma flow
is parallel to the upstream magnetic field, and the downstream plasma flow is also
parallel to the downstream magnetic field. Furthermore, the magnetic contribution to
the jump condition (8.185) becomes identically zero, which is a considerable simpli-
fication.

Equations (8.208) and (8.209) can be combined with the general jump conditions
(8.180)–(8.185) to give

ρ2

ρ1
= r, (8.210)

Bx 2

Bx 1
= 1, (8.211)

By 2

By 1
= r

 v2
1 − cos2 θ1 V2

A 1

v2
1 − r cos2 θ1 V2

A 1

 , (8.212)

Vx 2

Vx 1
=

1
r
, (8.213)

Vy 2

Vy 1
=

v2
1 − cos2 θ1 V2

A 1

v2
1 − r cos2 θ1 V2

A 1

, (8.214)

p2

p1
= 1 +

Γ v2
1 (r − 1)

V2
S 1 r

1 − r V2
A 1 sin2 θ1 ([r + 1] v2

1 − 2 r V2
A 1 cos2 θ1)

2 (v2
1 − r V2

A 1 cos2 θ1)2

 . (8.215)

where v1 = Vx 1 = V1 cos θ1 is the component of the upstream velocity normal to the
shock front, and θ1 is the angle subtended between the upstream plasma flow and the
shock front normal. Finally, given the compression ratio, r, the square of the normal
upstream velocity, v2

1, is a real root of a cubic equation known as the shock adiabatic:

0 = (v2
1 − r cos2 θ1 V2

A 1)2
(
[(Γ + 1) − (Γ − 1) r] v2

1 − 2 r V2
S 1

)
(8.216)

− r sin2 θ1 v
2
1 V2

A 1

(
[Γ + (2 − Γ) r] v2

1 − [(Γ + 1) − (Γ − 1) r] r cos2 θ1 V2
A 1

)
.

As before, the second law of thermodynamics mandates that r > 1.
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Let us first consider the weak shock limit r → 1. In this case, it is easily seen that
the three roots of the shock adiabatic reduce to

v2
1 = V2

− 1 ≡
V2

A 1 + V2
S 1 − [(V2

A 1 + V2
S 1)2 − 4 cos2 θ1 V2

S 1 V2
A 1]1/2

2
, (8.217)

v2
1 = cos2 θ1 V2

A 1, (8.218)

v2
1 = V2

+ 1 ≡
V2

A 1 + V2
S 1 + [(V2

A 1 + V2
S 1)2 − 4 cos2 θ1 V2

S 1 V2
A 1]1/2

2
. (8.219)

However, from Section 8.4, we recognize these velocities as belonging to slow, in-
termediate (or shear-Alfvén), and fast waves, respectively, propagating in the normal
direction to the shock front. We conclude that slow, intermediate, and fast MHD
shocks degenerate into the associated MHD waves in the limit of small shock ampli-
tude. Conversely, we can think of the various MHD shocks as nonlinear versions of
the associated MHD waves. Now, it can be demonstrated that

V+ 1 > cos θ1 VA 1 > V− 1. (8.220)

In other words, a fast wave travels faster than an intermediate wave, which trav-
els faster than a slow wave. It is reasonable to suppose that the same is true of the
associated MHD shocks, at least at relatively low shock strength. It follows from
Equation (8.212) that By 2 > By 1 for a fast shock, whereas By 2 < By 1 for a slow
shock. For the case of an intermediate shock, we can show, after a little algebra,
that By 2 → −By 1 in the limit r → 1. We conclude that (in the de Hoffmann-Teller
frame) fast shocks refract the magnetic field and plasma flow (recall that they are
parallel in our adopted frame of the reference) away from the normal to the shock
front, whereas slow shocks refract these quantities toward the normal. Moreover, the
tangential magnetic field and plasma flow generally reverse across an intermediate
shock front. This is illustrated in Figure 8.8.

When r is slightly larger than unity, it is easily demonstrated that the conditions
for the existence of a slow, intermediate, and fast shock are v1 > V− 1, v1 > cos θ1 VA 1,
and v1 > V+ 1, respectively.

Let us now consider the strong shock limit, v2
1 → ∞. In this case, the shock

adiabatic yields r → rm = (Γ + 1)/(Γ − 1), and

v2
1 '

rm

Γ − 1
2 V2

S 1 + sin2 θ1 [Γ + (2 − Γ) rm] V2
A 1

rm − r
. (8.221)

There are no other real roots. The previous root is clearly a type of fast shock. The
fact that there is only one real root suggests that there exists a critical shock strength
above which the slow and intermediate shock solutions cease to exist. In fact, they
merge and annihilate one another (Gurnett and Bhattacharjee 2005). In other words,
there is a limit to the strength of a slow or an intermediate shock. On the other
hand, there is no limit to the strength of a fast shock. Note, however, that the plasma
density and tangential magnetic field cannot be compressed by more than a factor
(Γ + 1)/(Γ − 1) by any type of MHD shock.
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Fast Intermediate Slow

shock−front

plasma flow

Figure 8.8 Characteristic plasma flow patterns across the three different types of
MHD shock in the de Hoffmann-Teller frame.

Consider the special case θ1 = 0 in which both the plasma flow and the magnetic
field are normal to the shock front. In this case, the three roots of the shock adiabatic
are

v2
1 =

2 r V2
S 1

(Γ + 1) − (Γ − 1) r
, (8.222)

v2
1 = r V2

A 1, (8.223)

v2
1 = r V2

A 1. (8.224)

We recognize the first of these roots as the hydrodynamic shock discussed in Sec-
tion 8.15 [see Equation (8.190)]. This shock is classified as a slow shock when
VS 1 < VA 1, and as a fast shock when VS 1 > VA 1. The other two roots are identical,
and correspond to shocks that propagate at the velocity v1 =

√
r VA 1 and “switch-

on” the tangential components of the plasma flow and the magnetic field: that is, it
can be seen from Equations (8.212) and (8.214) that Vy 1 = By 1 = 0 while Vy 2 , 0
and By 2 , 0 for these types of shock. Incidentally, it is also possible to have a
“switch-off” shock that eliminates the tangential components of the plasma flow and
the magnetic field. According to Equations (8.212) and (8.214), such a shock propa-
gates at the velocity v1 = cos θ1 VA 1. Switch-on and switch-off shocks are illustrated
in Figure 8.9.

Let us, finally, consider the special case θ = π/2. As is easily demonstrated, the
three roots of the shock adiabatic are

v2
1 = r

2 V2
S 1 + [Γ + (2 − Γ) r] V2

A 1

[Γ + 1] − [Γ − 1] r

 , (8.225)
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shock−front

plasma flow

Switch−on Switch−off

Figure 8.9 Characteristic plasma flow patterns across switch-on and switch-off

shocks in the de Hoffmann-Teller frame.

v2
1 = 0, (8.226)

v2
1 = 0. (8.227)

The first of these roots is clearly a fast shock, and is identical to the perpendicular
shock discussed in Section 8.16, except that there is no plasma flow across the shock
front in this case. The fact that the two other roots are zero indicates that, like the
corresponding MHD waves, slow and intermediate MHD shocks do not propagate
perpendicular to the magnetic field.

MHD shocks have been observed in a large variety of situations. For instance,
shocks are known to be formed by supernova explosions, by strong stellar winds, by
solar flares, and by the solar wind upstream of planetary magnetospheres (Gurnett
and Bhattacharjee 2005).

8.18 EXERCISES

1. We can add viscous effects to the MHD momentum equation by including a
term µ∇2V, where µ is the dynamic viscosity, so that

ρ
dV
dt

= j × b − ∇p + µ∇2V.

Likewise, we can add finite conductivity effects to the Ohm’s law by including
the term (1/µ0 σ)∇2B, to give

∂B
∂t

= ∇ × (V × B) +
1

µ0 σ
∇2B,
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Show that the modified dispersion relation for Alfvén waves can be obtained
from the standard one by multiplying both ω2 and V2

S by a factor

[1 + i k2/(µ0 σω)],

and ω2 by an additional factor

[1 + i µ k2/(ρ0 ω)].

If the finite conductivity and viscous corrections are small (i.e., σ → ∞ and
µ → 0), show that, for parallel (θ = 0) propagation, the dispersion relation for
the shear-Alfvén wave reduces to

k '
ω

VA
+ i

ω2

2 V3
A

(
1

µ0 σ
+
µ

ρ0

)
.

2. Demonstrate that V+ > VS cos θ, and V− < VS cos θ, where V+ and V− are
defined in Equation (8.45).

3. Demonstrate that Equation (8.65) can be rearranged to give

du2

dr

(
1 −

u2
c

u2

)
=

4 u2
c

r

(
1 −

rc

r

)
,

Show that this expression can be integrated to give(
u
uc

)2

− ln
(

u
uc

)2

= 4 ln
(

r
rc

)
+ 4

rc

r
+ C,

where C is a constant.

Let r/rc = 1+ x. Demonstrate that, in the limit |x| � 1, the previous expression
yields either

u2 = u2
c

[
1 ± 2 x + O(x2)

]
or

u2 = u2
0

1 +
2 u2

c x2

u2
0 − u2

c
+ O(x3)

 ,
where u0 , uc is an arbitrary constant. Deduce that the former solution with the
plus sign is such that u is a monotonically increasing function of r with u ≶ uc

as r ≶ rc (this is a Class 2 solution); that the former solution with the minus
sign is such that u is a monotonically decreasing function of r with u ≷ uc as
r ≶ rc (this is a Class 3 solution); that the latter solution with u0 < uc is such
that u < uc for all r (this is a Class 1 solution); and that the latter solution with
u0 > uc is such that u > uc for all r (this is a Class 4 solution).

4. Derive expression (8.111) from Equations (8.107)–(8.110).
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5. Consider a “two-dimensional” MHD fluid whose magnetic and velocity fields
take the divergence-free forms

B = ∇ψ × ez + Bz ez,

V = ∇φ × ez + Vz ez,

respectively, where ψ = ψ(x, y) and φ = φ(x, y). Here, (x, y, z) are standard
Cartesian coordinates. Demonstrate from the MHD Ohm’s law and Maxwell’s
equations that

d
dt

∫
ψ2 dx dy = −

2 η
µ0

∫ ∫
|∇ψ|2 dx dy,

where η is the (spatially uniform) plasma resistivity. Hence, deduce that a two-
dimensional “poloidal” magnetic field, Bp = ∇ψ × ez, cannot be maintained
against ohmic dissipation by dynamo action.

Given that Bp = 0, show that

d
dt

∫
B2

z dx dy = −
2 η
µ0

∫ ∫
|∇Bz|

2 dx dy.

Hence, deduce that a two-dimensional “axial” magnetic field, Bt = Bz ez, can-
not be maintained against ohmic dissipation by dynamo action.

6. Derive Equations (8.142) and (8.143) from Equations (8.139)–(8.141).

7. Derive Equations (8.149) and (8.150) from Equations (8.142)–(8.148).

8. Derive Equation (8.156) from Equations (8.151)–(8.155).

9. Derive Equation (8.161) from Equations (8.156)–(8.159).

10. Derive Equation (8.163) from Equation (8.161).

11. Derive Equations (8.169)–(8.176) from the MHD equations, (8.1)–(8.4), and
Maxwell’s equations.

12. Derive Equations (8.188)–(8.191) from the MHD Rankine-Hugoniot relations.

13. Demonstrate that for a parallel MHD shock the downstream Mach number has
the following relation to the upstream Mach number:

M2 =

 2 + (Γ − 1) M2
1

2Γ M2
1 − (Γ − 1)

1/2

.

Hence, deduce that if M1 > 1 then M2 < 1.

14. Derive Equations (8.201)–(8.204) from the MHD Rankine-Hugoniot relations.
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15. Demonstrate that Equation (8.204) is equivalent to

−Γ (Γ + 1) β2 M2
2 r2 + Γ

[
2 (1 + β2) + (Γ − 1) β2 M2

2

]
r + 2 (2 − Γ)} = 0.

Hence, deduce that if the second law of thermodynamics requires the positive
root of this equation to be such that r > 1 then

M2
2 < 1 +

2
Γ β2

:

that is,
V2 < V+ 2,

where V+ 2 = (V2
S 2 + V2

A 2)1/2 is the downstream fast wave velocity.

16. Derive Equations (8.210)–(8.216) from the MHD Rankine-Hugoniot relations
combined with Equations (8.208) and (8.209).
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Magnetic Reconnection

9.1 INTRODUCTION

Magnetic reconnection is a phenomenon that is of particular importance in solar
system plasmas. In the solar corona, it results in the rapid release to the plasma of
energy stored in the large-scale structure of the coronal magnetic field, an effect that
is thought to give rise to solar flares (Priest 1984). Small-scale reconnection may play
a role in heating the corona, and, thereby, driving the outflow of the solar wind (Priest
1984). In the Earth’s magnetosphere, magnetic reconnection in the magnetotail is
thought to be the precursor for auroral sub-storms (Ratcliffe 1972).

The evolution of the magnetic field in a resistive-MHD plasma is governed by
the following well-known equation [see Equation (8.102)]:

∂B
∂t

= ∇ × (V × B) +
η

µ0
∇2B. (9.1)

The first term on the right-hand side of this equation describes the convection of the
magnetic field by the plasma flow. The second term describes the resistive diffusion
of the field through the plasma. If the first term dominates then magnetic flux is
frozen into the plasma, and the topology of the magnetic field cannot change. (See
Section 8.3.) On the other hand, if the second term dominates then there is little
coupling between the field and the plasma flow, and the topology of the magnetic
field is free to change.

The relative magnitude of the two terms on the right-hand side of Equation (9.1)
is conventionally measured in terms of magnetic Reynolds number or Lundquist num-
ber:

S =
µ0 V L
η
'
|∇ × (V × B)|
|(η/µ0)∇2B|

, (9.2)

where V is the characteristic flow speed, and L the characteristic lengthscale, of the
plasma. If S is much larger than unity then convection dominates, and the frozen flux
constraint prevails, whereas if S is much less than unity then diffusion dominates, and
the coupling between the plasma flow and the magnetic field is relatively weak.

It turns out that very large S -values are virtually guaranteed to occur in the solar
system because of the extremely large lengthscales of solar system plasmas. For

DOI: 10.1201/9781003268253-9 241

https://doi.org/10.1201/9781003268253-9


242 � Plasma Physics: An Introduction (2nd Edition)

instance, S ∼ 108 for solar flares, whereas S ∼ 1011 is appropriate for the solar wind
and the Earth’s magnetosphere (Priest 1984). Of course, in calculating these values,
we have identified the lengthscale L with the characteristic size of the plasma under
investigation.

On the basis of the previous discussion, it seems reasonable to neglect diffusive
processes altogether in solar system plasmas. Of course, this leads to very strong
constraints on the behavior of such plasmas, because, in this limit, all cross-field
mixing of plasma elements is suppressed. Particles may freely mix along field-lines
(within limitations imposed by magnetic mirroring, etc.), but are completely ordered
perpendicular to the field, because they always remain tied to the same field-lines as
they convect in the plasma flow.

Let us consider what happens when two initially separate plasma regions come
into contact with one another, as occurs, for example, in the interaction between the
solar wind and the Earth’s magnetosphere. Assuming that each plasma is frozen to its
own magnetic field, and that cross-field diffusion is absent, we conclude that the two
plasmas will not mix, but, instead, that a thin boundary layer will form between them,
separating the two plasmas and their respective magnetic fields. In equilibrium, the
location of the boundary layer will be determined by pressure balance. Because, in
general, the frozen fields on either side of the boundary will have differing strengths,
and differing orientations tangential to the boundary, the layer must also constitute
a current sheet. Thus, flux freezing leads inevitably to the prediction that in plasma
systems space becomes divided into separate cells, wholly containing the plasma and
magnetic field from individual sources, and separated from each other by thin current
sheets.

The “separate cell” picture constitutes an excellent zeroth-order approximation
to the interaction of solar system plasmas, as witnessed, for example, by the well-
defined planetary magnetospheres (Russell 1991). It must be noted, however, that
the large S -values upon which the applicability of the frozen flux constraint was
justified were derived using the large overall spatial scales of the systems involved.
However, strict application of this constraint to the problem of the interaction of
separate plasma systems leads to the inevitable conclusion that structures will form
having small spatial scales, at least in one dimension: that is, the thin current sheets
constituting the cell boundaries. It is certainly not guaranteed, from the previous dis-
cussion, that the effects of diffusion can be neglected in these boundary layers. In fact,
we shall demonstrate that the localized breakdown of the flux freezing constraint in
the boundary regions, due to diffusion, not only has an impact on the properties of
the boundary regions themselves, but can also have a decisive impact on the large
lengthscale plasma regions in which the flux freezing constraint remains valid. This
observation illustrates both the subtlety and the significance of the magnetic recon-
nection process.

9.2 REDUCED-MHD EQUATIONS

In order to investigate the stability of the aforementioned current sheets that form
at cell boundaries, we shall employ a set of MHD equations that neglects plasma
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compressibility, but incorporates plasma resistivity [cf. Equations (8.1)–(8.3)]:

∇ · V = 0, (9.3)

ρ

[
∂V
∂t

+ (V · ∇)V
]

+ ∇p − j × B = 0, (9.4)

E + V × B = η j. (9.5)

Here, the plasma mass density, ρ, and resistivity, η, are both assumed to be spatially
uniform, for the sake of simplicity. Compressibility is neglected (i.e., ∇·V is assumed
to be zero) in order to decouple the fast and slow magnetosonic waves from the
problem. (See Section 8.4.) It turns out that the instabilities that lead to magnetic
reconnection in current sheets (so-called “tearing modes”) are modified forms of
the shear-Alfvén wave (Hazeltine and Meiss 1985), and are not related to either of
the magnetosonic waves. Indeed, current sheets that exhibit magnetic reconnection
resonate with the shear-Alfvén wave, whose dispersion relation is ω = k · B/√µ0 ρ
(see Section 8.4), where k is the wavevector. A shear-Alfvén resonance occurs when
ω = 0 (i.e., when the wave frequency is reduced to zero), which implies that k ·B = 0
at the resonance.

The three simplified MHD equations, (9.3)–(9.5), form a complete set when com-
bined with Maxwell’s equations:

∇ · B = 0, (9.6)

∇ × E = −
∂B
∂t
, (9.7)

∇ × B = µ0 j. (9.8)

Note that we are justified in neglecting the displacement current because we are
dealing with waves whose phase velocities are small compared to the velocity of
light in vacuum.

Consider a simplified scenario in which the Cartesian coordinate z is ignorable. In
other words, there is no variation in the z-direction (i.e., ∂/∂z = 0), and no component
of the magnetic field or the plasma flow velocity in the z-direction (i.e., Bz = Vz = 0.)
We can automatically satisfy Equations (9.3) and (9.6) by writing

V = ∇φ × ez, (9.9)

B = ∇ψ × ez, (9.10)

where ez is a unit vector parallel to the z-axis. Note that V · ∇φ = B · ∇ψ = 0.
Thus, φ(x, y) and ψ(x, y) map out the flow stream-lines and the magnetic field-lines,
respectively, in the x-y plane. ψ(x, y) is usually referred to as magnetic flux, because
the net magnetic flux (per unit length in the z-direction) that passes through a surface
(whose normal lies in the x-y plane) that links points (x1, y1) and (x2, y2) is ψ(x1, y1)−
ψ(x2, y2).
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If we take the z-component of Equation (9.5), combined with Equations (9.7)–
(9.10), and the z-component of the curl of Equation (9.4), combined with Equa-
tions (9.8)–(9.10), then we obtain the reduced-MHD equations (Strauss 1976):

∂ψ

∂t
= [φ, ψ] +

η

µ0
(J − J0), (9.11)

ρ
∂U
∂t

= ρ [φ,U] + µ−1
0 [J, ψ], (9.12)

J = ∇2ψ, (9.13)

U = ∇2φ, (9.14)

where [A, B] ≡ ∇A × ∇B · ez. Here, the current density is written j = −µ−1
0 J ez,

and ω = −U ez is the plasma vorticity. Moreover, J0(x) parametrizes the z-directed
inductive electric field that prevents the current in the current sheet from eventually
decaying to zero under the action of resistivity. The reduced-MHD equations are so-
called because they do not contain the full range of MHD physics (i.e., they do not
contain the slow and fast magnetosonic waves).

9.3 LINEARIZED REDUCED-MHD EQUATIONS

Consider the stability of a current sheet whose equilibrium state is characterized by

J0(x) = −
B0

a
cosh−2

( x
a

)
. (9.15)

The corresponding equilibrium magnetic field and current density takes the respec-
tive forms

B0 = B0 tanh
( x
a

)
ey, (9.16)

j0 =
B0

µ0 a
cosh−2

( x
a

)
ez, (9.17)

where ey is a unit vector parallel to the y-axis. The equilibrium plasma flow is as-
sumed to be zero. The current sheet consists of filaments that run parallel to the
z-axis. As illustrated in Figure 9.1, the sheet is centered on the plane x = 0, and is
of thickness a in the x-direction. The magnetic field generated by the current sheet
is parallel to the y-axis, of magnitude B0, and switches direction across the sheet. In
other words, B0 y = −B0 for x � −a, and B0 y = +B0 for x � +a. Note that B0 y = 0
at the center of the sheet, x = 0.

Consider a small perturbation to the aforementioned current sheet that varies peri-
odically in the y-direction with wavelength 2π/k. The wavevector of the perturbation
is therefore k = (0, k, 0). It follows that the perturbation satisfies the shear-Alfvén
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Figure 9.1 A current sheet. The solid curve shows B0 y/B0, whereas the dashed curve
shows j0 z/(B0/µ0 a).

resonance condition, k · B0 = 0, at x = 0. We can write

ψ(x, y, t) = −B0 a ln
[
cosh

( x
a

)]
+ ψ1(x) e i k y+γ t, (9.18)

J(x, y, t) = −
B0

a
cosh−2

( x
a

)
+ J1(x) e i k y+γ t, (9.19)

φ(x, y, t) = φ1(x) e i k y+γ t, (9.20)

U(x, y, t) = U1(x) e i k y+γ t, (9.21)

where γ is the growth-rate of the perturbation, and ψ1, J1, φ1, and U1 are all consid-
ered to be small (compared to equilibrium quantities) quantities.

Substituting Equations (9.18)–(9.21) into the reduced-MHD equations, (9.11)–
(9.14), making use of Equation (9.15), and only retaining terms that are first order in
small quantities, we obtain the linearized reduced-MHD equations:

γ ψ1 = i k B0 F φ1 +
η

µ0

(
d2

dx2 − k2
)
ψ1, (9.22)

γ ρ

(
d2

dx2 − k2
)
φ1 = i µ−1

0 k B0 F
(

d2

dx2 − k2 −
d2F/dx2

F

)
ψ1, (9.23)

where F(x) = tanh(x/a).
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It is helpful to define the hydromagnetic timescale,

τH =
k−1

(B2
0/µ0 ρ)1/2

, (9.24)

which is the typical time required for a shear-Alfvén wave to propagate a wavelength
parallel to the y-axis, as well as the resistive diffusion timescale,

τR =
µ0 a2

η
, (9.25)

which is the typical time required for magnetic flux to diffuse across the current sheet
in the x-direction. The effective Lundquist number for the problem is

S =
τR

τH
. (9.26)

Let x = a x̂, k = k̂/a, γ = γ̂/τH , ψ1 = −a B0 ψ̂, and φ1 = i (γ a/k) φ̂. The
dimensionless, normalized versions of the linearized reduced-MHD equations, (9.22)
and (9.23), become

S γ̂
(
ψ̂ − F φ̂

)
=

(
d2

dx̂2 − k̂2
)
ψ̂, (9.27)

γ̂ 2
(

d2

dx̂2 − k̂2
)
φ̂ = −F

(
d2

dx̂2 − k̂2 −
F′′

F

)
ψ̂, (9.28)

where F(x̂) = tanh(x̂) and ′ ≡ d/dx̂. Our normalization scheme is designed such
that, throughout the bulk of the plasma, ψ̂ ∼ φ̂, and the only other quantities in the
previous two equations whose magnitudes differ substantially from unity are S γ̂ and
γ̂ 2. The term on the right-hand side of Equation (9.27) represents plasma resistivity,
whereas the term on the left-hand side of Equation (9.28) represents plasma inertia.
The shear-Alfvén resonance condition, k · B0 ≡ k B0 F = 0, reduces to F = 0.

9.4 ASYMPTOTIC MATCHING

Suppose that the perturbation grows on a timescale that is much less than τR, but
much greater than τH . It follows that

γ̂ � 1 � S γ̂. (9.29)

Thus, throughout much of the plasma, we can neglect the right-hand side of Equa-
tion (9.27), and the left-hand side of Equation (9.28), which is equivalent to the ne-
glect of plasma resistivity and inertia. In this case, Equations (9.27) and (9.28) reduce
to

φ̂ =
ψ̂

F
, (9.30)

d2ψ̂

dx̂2 − k̂2 ψ̂ −
F′′

F
ψ̂ = 0. (9.31)
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Equation (9.30) is simply the flux-freezing constraint that requires the plasma to
move with the magnetic field. Equation (9.31) is the linearized, static, force balance
criterion: ∇× (j×B +∇p) = 0. Equations (9.30) and (9.31) are known collectively as
the equations of marginally-stable ideal-MHD, and are valid throughout virtually the
whole plasma. However, it is clear that these equations break down in the immediate
vicinity of the shear-Alfvén resonance, where F = 0 (i.e., where the equilibrium
magnetic field reverses direction). Observe, for instance, that the x-component of the
plasma velocity, −γ a φ̂, becomes infinite as F → 0, according to Equation (9.30).

The marginally-stable ideal-MHD equations break down close to the shear-
Alfvén resonance because the neglect of plasma resistivity and inertia becomes un-
tenable as F ≡ tanh(x̂) → 0. Thus, there is a thin (compared to the current sheet
thickness a) layer, centered on the resonance, x̂ = 0, where the behavior of the
plasma is governed by the linearized reduced-MHD equations, (9.27) and (9.28).
We can simplify these equations, making use of the fact that |x̂| � 1, and |d/dx̂| � 1,
in a thin layer, to obtain the following layer equations:

S γ̂ (ψ̂ − x̂ φ̂) =
d2ψ̂

dx̂2 , (9.32)

γ̂2 d2φ̂

dx̂2 = −x̂
d2ψ̂

dx̂2 . (9.33)

Here, we have also assumed that |k̂ x̂| � 1 in the layer.
The stability problem reduces to solving the layer equations, (9.32) and (9.33), in

the immediate vicinity of the shear-Alfvén resonance, x̂ = 0, solving the marginally-
stable ideal-MHD equations, (9.30) and (9.31), everywhere else in the plasma, and
matching the two solutions at the edge of the layer. This method of solution, which
is known as asymptotic matching, was first described in a classic paper by Furth,
Killeen, and Rosenbluth (Furth, Killeen, and Rosenbluth 1963).

Let us consider the solution of the so-called tearing mode equation, (9.31),
throughout the bulk of the plasma. We could imagine launching a solution, ψ̂(x̂),
at large positive x̂, which satisfies the physical boundary conditions as x̂ → ∞, and
integrating this solution to the right-hand boundary of the layer at x̂ = 0+. Likewise,
we could also launch a solution at large negative x̂, which satisfies physical boundary
conditions as x̂ → −∞, and integrate this solution to the left-hand boundary of the
layer at x̂ = 0−. Maxwell’s equations demand that ψ̂ be continuous on either side of
the layer. Hence, we can multiply our two solutions by appropriate factors, so as to
ensure that ψ̂ matches to the left and to the right of the layer. This leaves the function
ψ̂(x̂) undetermined to an overall multiplicative constant, just as we would expect in
linear problem. In general, dψ̂/dx̂ is not continuous to the left and to the right of the
layer. Thus, the marginally-stable ideal-MHD solution can be characterized by the
real number

∆′ =

[
1
ψ̂

dψ̂
dx̂

]x̂=0+

x̂=0−

: (9.34)

that is, the jump in the logarithmic derivative of ψ̂ to the right and to the left of the
layer. This parameter is known as the tearing stability index, and is solely a property
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Figure 9.2 Solutions of the tearing mode equation, (9.31), for a current sheet char-
acterized by F(x̂) = tanh(x̂). The solid curve corresponds to k̂ = 0.5, and the dashed
curve to k̂ = 1.5.

of the plasma equilibrium, the wavenumber, k, and the boundary conditions imposed
at infinity.

Let us assume that the current sheet is isolated (i.e., it is not subject to any external
magnetic perturbation). In this case, the appropriate boundary conditions at infinity
are ψ̂(|x̂| → ∞) → 0. For the particular plasma equilibrium under consideration, for
which F(x̂) = tanh(x̂), the tearing mode equation, (9.31), takes the form

d2ψ̂

dx̂2 − k̂2 ψ̂ +
2

cosh2 x̂
ψ̂ = 0. (9.35)

The previous equation can be solved analytically, subject to the aforementioned
boundary conditions, to give (Biskamp 1993)

ψ̂(x̂) = Ψ e−k̂ |x̂|
(
1 + k̂−1 tanh |x̂|

)
, (9.36)

where Ψ is an arbitrary constant. This solution is illustrated in Figure 9.2. At the
edge of the layer, which corresponds to the limit |x̂| → 0, the previous expression, in
combination with Equation (9.30), yields

ψ̂(x̂)→ Ψ

[
1 +

∆′

2
|x̂| + O(x̂ 2)

]
, (9.37)

φ̂(x̂)→
ψ̂

x̂
, (9.38)



Magnetic Reconnection � 249

0

10

20

30

40

∆′

0 1 2

k̂

Figure 9.3 The variation of the tearing stability index, ∆′, with the wavenumber, k̂,
for a current sheet characterized by F(x̂) = tanh(x̂).

where

∆′ =
2 (1 − k̂2)

k̂
, (9.39)

and use has been made of Equation (9.34). As illustrated in Figure 9.3, ∆′ < 0 for
k̂ > 1, ∆′ > 0 for k̂ < 1, and ∆′ → ∞ as k̂ → 0.

The layer equations, (9.32) and (9.33), possess the trivial twisting parity solution
(Strauss, et al. 1979), φ̂ = φ̂0, ψ̂ = x̂ φ̂0, where φ̂0 is independent of x̂. However,
this solution cannot be matched to the so-called outer solution, (9.36), which has
the opposite parity. Fortunately, the layer equations also possess a nontrivial tearing
parity solution, such that ψ̂(−x̂) = ψ̂(x̂) and φ̂(−x̂) = −φ̂(x̂), which can be matched to
the outer solution. The asymptotic behavior of the tearing parity solution at the edge
of the layer is

ψ̂(x̂)→ Ψ ′
[
1 +

∆

2
|x̂| + O(x̂ 2)

]
, (9.40)

φ̂→
ψ̂

x̂
, (9.41)

where Ψ ′ is an arbitrary constant, and the parameter ∆(γ̂, S ) is determined by solving
the layer equations. Matching Equations (9.37), (9.38), (9.40) and (9.41) at the edge
of the layer yields Ψ = Ψ ′, and

∆(γ̂, S ) = ∆′. (9.42)

The latter matching condition determines the growth-rate of the perturbation.
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9.5 TEARING MODES

The layer equations, (9.32) and (9.33), can be solved in a fairly straightforward man-
ner in Fourier space. Let

φ̂(x̂) =

∫ ∞

−∞

φ̄(p) e i S 1/3 x̂ p dp, (9.43)

ψ̂(x̂) =

∫ ∞

−∞

ψ̄(p) e i S 1/3 x̂ p dp, (9.44)

where φ̄(−p) = −φ̄(p), and ψ̄(−p) = ψ̄(p). Equations (9.32) and (9.33) can be Fourier
transformed, and the results combined, to give

d
dp

(
p2

Q + p2

dφ̄
dp

)
− Q p2 φ̄ = 0, (9.45)

where
Q = S 1/3 γ̂. (9.46)

The most general small-p asymptotic solution of Equation (9.45) is written

φ̄(p) =
a−1

p
+ a0 + O(p), (9.47)

where a−1 and a0 are independent of p, and it is assumed that p > 0. When inverse
Fourier transformed, the previous expression leads to the following expression for
the asymptotic behavior of φ̂ at the edge of the layer (Erdéyli 1954):

φ̂(x̂) = 2 i
[ a0

S 1/3 x̂
+
π a−1

2
sgn(x̂) + O(x̂2)

]
. (9.48)

It follows from a comparison with Equations (9.40) and (9.41) that

∆ = π
a−1

a0
S 1/3. (9.49)

Thus, the layer matching parameter, ∆, is determined from the small-p asymptotic
behavior of the Fourier-transformed layer solution.

Let us search for an unstable perturbation characterized by Q > 0. It is convenient
to assume that

Q � 1. (9.50)

This ordering, which is known as the constant-ψ approximation [because it implies
that ψ̂(x̂) is approximately constant across the layer] will be justified later on.

In the limit p � Q1/2, Equation (9.45) reduces to

d2φ̄

dp2 − Q p2 φ̄ = 0. (9.51)
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The solution to this equation that is well behaved in the limit p → ∞ is
written U(0,

√
2 Q1/4 p), where U(a, x) is a standard parabolic cylinder function

(Abramowitz and Stegun 1965). In the limit

Q1/2 � p � Q−1/4, (9.52)

we can make use of the standard small-argument expansion of U(a, x) to write the
most general solution to Equation (9.45) in the form (Abramowitz and Stegun 1965)

φ̄(p) = A
[
1 −

2 Γ(3/4)
Γ(1/4)

Q1/4 p + O(p2)
]
. (9.53)

Here, A is an arbitrary constant, and Γ(z) is a gamma function (Abramowitz and
Stegun 1965).

In the limit
p � Q−1/4, (9.54)

Equation (9.45) reduces to

d
dp

(
p2

Q + p2

dφ̄
dp

)
= 0. (9.55)

The most general solution to this equation is written

φ̄(p) = B
(
−

Q
p

+ p
)

+ C + O(p2), (9.56)

where B and C are arbitrary constants. Matching coefficients between Equations
(9.53) and (9.56) in the range of p satisfying the inequality (9.52) yields the following
expression for the most general solution to Equation (9.45) in the limit p � Q1/2:

φ̄ = A
[
2 Γ(3/4)
Γ(1/4)

Q5/4

p
+ 1 + O(p)

]
. (9.57)

Finally, a comparison of Equations (9.47), (9.49), and (9.57) gives the result

∆ =
2πΓ(3/4)

Γ(1/4)
S 1/3 Q5/4. (9.58)

The asymptotic matching condition (9.42) can be combined with the previous
expression for ∆ to give (Furth, Killeen, and Rosenbluth 1963)

γ̂ =

[
Γ(1/4)

2πΓ(3/4)

]4/5

∆′ 4/5 S −3/5, (9.59)

or

γ =

[
Γ(1/4)

2πΓ(3/4)

]4/5
∆′ 4/5

τ2/5
H τ3/5

R

. (9.60)



252 � Plasma Physics: An Introduction (2nd Edition)

Here, use has been made of the definitions of S , Q, and γ̂. According to the
previous equation, the perturbation, which is known as a tearing mode, is unstable
whenever ∆′ > 0, and grows on the hybrid timescale τ2/5

H τ3/5
R . [This hybrid growth

time is consistent with our initial assumption (9.29), provided that S � 1.] It is easily
demonstrated that the tearing mode is stable whenever ∆′ < 0. Thus, we can now
appreciate that the solid curve in Figure 9.2, which is indented at the top (because
∆′ > 0), is the outer solution of an unstable tearing mode, whereas the dashed curve
(which is not indented) is the outer solution of a stable tearing mode. Note, finally,
that γ̂ → 0 as S → ∞. In other words, the instability of the current sheet when ∆′ > 0
is only made possible by finite plasma resistivity.

According to Equations (9.42), (9.50), and (9.58), the constant-ψ approximation
holds provided that

∆′ � S 1/3 : (9.61)

that is, provided that the tearing mode does not become too unstable.
Equation (9.51) implies that thickness of the layer in p-space is

δp ∼
1

Q1/4 . (9.62)

It follows from Equations (9.43), (9.44), and (9.46) that the thickness of the layer in
x̂-space is

δ̂ ∼
1

S 1/3 δp
∼

(
γ̂

S

)1/4

. (9.63)

When ∆′ ∼ 1 then γ̂ ∼ S −3/5, according to Equation (9.59), giving δ̂ ∼ S −2/5. It is
clear, therefore, that if the Lundquist number, S , is very large then the resistive layer
centered on the shear-Alfvén resonance, x̂ = 0, is extremely narrow compared to the
width of the current sheet.

The timescale for magnetic flux to diffuse across a layer of thickness δ̂ (in x̂-
space) is [see Equation (9.25)]

τ ∼ τR δ̂
2. (9.64)

If
γ τ � 1 (9.65)

then the tearing mode grows on a timescale that is far longer than the timescale on
which magnetic flux diffuses across the layer. In this case, we would expect the nor-
malized flux, ψ̂, to be approximately constant across the layer, because any nonuni-
formities in ψ̂ would be smoothed out via resistive diffusion. It follows from Equa-
tions (9.63) and (9.64) that the constant-ψ approximation holds provided that

γ̂ � S −1/3 (9.66)

(i.e., Q � 1), which is in agreement with Equation (9.50).
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9.6 RESISTIVE KINK MODES

Our previous solution of the Fourier-transformed layer equation, (9.45), is only valid
in the constant-ψ limit, Q � 1. In order to determine how this solution is modified
when the constant-ψ approximation breaks down, we need to find a solution that is
valid as Q→ 1. Now, when expanded to O(p3), the most general small-p asymptotic
solution of Equation (9.45) takes the form

φ̄(p) =
a−1

p
+ a0 + a−1

(
Q2

2
−

1
Q

)
p +

a0 Q2 p2

6
+ O(p3). (9.67)

As before, a−1 and a0 are independent of p, and it is assumed that p > 0. Let

K(p) =
p2

Q + p2

dφ̄
dp
. (9.68)

Equation (9.45) transforms to give

d
dp

(
1
p2

dK
dp

)
−

Q (Q + p2)
p2 K = 0. (9.69)

As is clear from Equations (9.67) and (9.68), the most general small-p asymptotic
solution of the previous equation is

Q K(p) = −a−1 +
a−1 Q2 p2

2
+

a0 Q2 p3

3
+ O(p4). (9.70)

Let
z = Q1/2 p2. (9.71)

Equations (9.69) and (9.70) yield

z
d2K
dz2 −

1
2

dK
dz
−

1
4

(Q3/2 + z) K = 0, (9.72)

and

Q K(z) = −a−1 +
a−1 Q3/2 z

2
+

a0 Q5/4 z3/2

3
+ O(z2), (9.73)

respectively.
Let

K(z) = e−z/2 L(z). (9.74)

Equations (9.72) and (9.73) give

z
d2L
dz2 +

(
−

1
2
− z

)
dL
dz
−

1
4

(
Q3/2 − 1

)
L = 0, (9.75)

and

Q L(z) = −a−1 +
a−1 (Q3/2 − 1) z

2
+

a0 Q5/4 z3/2

3
+ O(z2), (9.76)
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respectively. Equation (9.75) is Kummer’s equation (Abramowitz and Stegun 1965).
The solution that is well behaved as z → ∞ is a confluent hypergeometric function
of the second kind (Abramowitz and Stegun 1965),

L(z) = U
[
1
4

(Q3/2 − 1),−
1
2
, z

]
, (9.77)

which has the small-z asymptotic expansion (Abramowitz and Stegun 1965)

L(z) = −π

[
1 − (1/2) (Q3/2 − 1) z

Γ[(5 + Q3/2)/4] Γ(−1/2)
−

z3/2

Γ[(Q3/2 − 1)/4] Γ(5/2)
+ O(z2)

]
. (9.78)

Comparing Equations (9.49), (9.76), and (9.78), we obtain (Coppi, et al. 1976; Pego-
raro and Schep 1986)

∆ = −
π

8
Γ(Q3/2/4 − 1/4)
Γ(Q3/2/4 + 5/4)

S 1/3 Q5/4, (9.79)

where use has been made of some elementary properties of gamma functions
(Abramowitz and Stegun 1965). In the constant-ψ limit, Q � 1, the previous ex-
pression reduces to

∆ '
2πΓ(3/4)

Γ(1/4)
S 1/3 Q5/4, (9.80)

which is consistent with Equation (9.58).
When combined with the matching condition (9.42), Equation (9.79) yields the

dispersion relation
∆′

S 1/3 = −
π

8
Γ(Q3/2/4 − 1/4)
Γ(Q3/2/4 + 5/4)

Q5/4. (9.81)

This dispersion relation is illustrated in Figure 9.4. It can be seen that Q5/4 ∝ ∆′/S 1/3

in the constant-ψ regime, ∆′/S 1/3 � 1, in accordance with standard tearing mode
theory. (See Section 9.5.) On the other hand, Q → 1 in the nonconstant-ψ regime,
∆′/S 1/3 � 1.

The general dispersion relation (9.81) implies that the growth-rate of a tearing
mode does not continue to increase indefinitely as the tearing stability index, ∆′, be-
comes larger and larger, which is the prediction of the constant-ψ dispersion relation
(9.60). Instead, when ∆′ exceeds a critical value that is of order S 1/3 (implying the
breakdown of the constant-ψ approximation), the growth-rate saturates at the value

γ =
1

τ2/3
H τ1/3

R

. (9.82)

In this limit, the tearing mode is usually referred to as a resistive kink mode.

9.7 CONSTANT-ψ MAGNETIC ISLANDS

Suppose that the constant-ψ approximation is valid. According to Section 9.5, this
implies that the perturbed magnetic flux, ψ1(x), is approximately constant in the
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Figure 9.4 The normalized growth-rate, Q, as a function of the normalized tearing
stability index, ∆′/S 1/3, according to the resistive-kink dispersion relation, (9.81).
The dashed line illustrates the relation ∆′/S 1/3 ∝ Q5/4.

vicinity of the resonant layer. Let ψ(x, y, t) = −B0 a ψ̂(x, y, t) and ψ1(x) e γ t =

−B0 a Ψ̂ (t) e−iϕ, where Ψ̂ is real and positive, and ϕ is real. The physical magnetic
flux, which is the real part of Equation (9.18), reduces to

ψ̂(x̂, ξ, t̂) =
x̂2

2
+ Ψ̂ (t̂) cos ξ (9.83)

in the limit |x̂| � 1, where ξ = k y − ϕ. Let

Ŵ = 4 Ψ̂1/2. (9.84)

Equation (9.83) yields
ψ̂(x̂, ξ)

Ψ̂
= 8

(
x̂

Ŵ

)2

+ cos ξ. (9.85)

Figure 9.5 shows the contours of ψ̂(x̂, ξ) specified in the previous equation. Recall
that the contours of ψ̂ correspond to magnetic field-lines. It can be seen that the tear-
ing mode has changed the topology of the magnetic field in the immediate vicinity
of the resonant surface, x̂ = 0. In fact, as the tearing mode grows in amplitude (i.e.,
as Ψ̂ increases), magnetic field-lines pass through the magnetic “X-points” (which
are located at x̂ = 0, ξ = n 2π, where n is an integer), at which time they break (or



256 � Plasma Physics: An Introduction (2nd Edition)

0 1 2 3 4 5 6
ξ/π

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
̂ x/
Ŵ

Figure 9.5 Equally-spaced contours of the magnetic flux-function, ψ̂(x̂, ξ), in the
vicinity of a constant-ψ magnetic island chain. The magnetic separatrix is shown as
a dashed line.

“tear”) and then reconnect to form new field-lines that do not extend over all values
of ξ. The magnetic field-line that forms the boundary between the unreconnected
and reconnected regions is known as the magnetic separatrix, and corresponds to
the contour ψ̂(x̂, ξ) = Ψ̂ . The reconnected regions within the magnetic separatrix
are termed magnetic islands. The full width (in x̂) of the magnetic separatrix, which
is known as the magnetic island width, is Ŵ. It can be seen from Equation (9.84)
that the magnetic island width is proportional to the square-root of the quantity Ψ̂ ,
which is termed the (normalized) reconnected magnetic flux. (In fact, the magnetic
flux, per unit length in the z-direction, that passes through a surface (whose nor-
mal lies in the x-y plane) linking the center of a magnetic island to the separatrix is
2 a B0 Ψ̂ .)

Consider the term [φ, ψ], appearing in the reduced-MHD Ohm’s law, (9.11). With
ψ̂ specified by Equation (9.83), the term in question reduces to

[φ, ψ] = B0 k x̂
∂φ

∂ξ
+ B0 k

∂φ

∂x̂
Ψ̂ sin ξ. (9.86)

The first term on the right-hand side of the previous equation is linear (i.e., it is first
order in the perturbed quantities φ and Ψ̂ ), whereas the second is nonlinear (i.e., it is
second order in perturbed quantities). Thus, linear layer theory is only valid when the
second term is negligible with respect to the first. Estimating both (∂φ/∂ξ)/(∂φ/∂x̂)
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and x̂ as δ̂, where δ̂ is the normalized constant-ψ linear layer width, and recalling that
Ψ̂ ∝ Ŵ 2, the criterion for the validity of linear layer theory becomes

δ̂ � Ŵ. (9.87)

In other words, linear layer theory is only valid when the magnetic island width is
much less than the linear layer width. Given that linear layers in a high Lundquist
number plasmas are very narrow (i.e, δ̂ ∼ S −2/5), this implies that linear layer theory
breaks down before the tearing mode has significantly modified the topology of the
magnetic field.

9.8 CONSTANT-ψ MAGNETIC ISLAND EVOLUTION

Let us consider the nonlinear evolution of a chain of constant-ψ magnetic islands
whose thickness is much greater than the linear layer thickness, but much less than
the thickness of the equilibrium current sheet. In other words,

δ̂ � Ŵ � 1, (9.88)

where δ̂ = S −2/5.
Writing ψ = −B0 a ψ̂, J = −(B0/a) (1 + Ĵ), φ = (a/k τR) φ̂, U = (1/a k τR) Û, and

t = τR t̂, the reduced-MHD equations, (9.11)–(9.14), become

∂ψ̂

∂t̂
= {φ̂, ψ̂} + Ĵ, (9.89)

∂Û
∂t̂

= {φ̂, Û} + S 2 {Ĵ, ψ̂}, (9.90)

∂2ψ̂

∂x̂2 = 1 + Ĵ, (9.91)

Û =
∂2φ̂

∂x̂2 (9.92)

in the limit |x̂| � 1, where

{A, B} ≡
∂A
∂x̂

∂B
∂ξ
−
∂A
∂ξ

∂B
∂x̂
. (9.93)

In the island region, x̂ ∼ Ŵ, ξ ∼ 1, ψ̂ ∼ Ŵ 2, Ĵ ∼ Ŵ (this is consistent with
∆′ ∼ 1), t̂ ∼ Ŵ (as will become apparent), φ̂ ∼ 1 (as will also become apparent), and
Û ∼ 1/Ŵ 2. It follows that all terms in Equations (9.89) and (9.92) are of the same
order of magnitude. On the other hand, the terms involving Û in Equation (9.90)
are smaller than the other term by a factor (δ̂/Ŵ)5. Finally, the term involving Ĵ in
Equation (9.91) is smaller than the other terms by a factor Ŵ. Thus, to lowest order,
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Equations (9.89)–(9.92) reduce to

∂ψ̂

∂t̂
= {φ̂, ψ̂} + Ĵ, (9.94)

{Ĵ, ψ̂} = 0, (9.95)

∂2ψ̂

∂x̂2 = 1. (9.96)

It is clear that the terms involving plasma inertia (i.e., the terms involving Û) in
the vorticity evolution equation (9.90) become negligible as soon as the island width
exceeds the linear layer width, leaving (9.95), which corresponds to the force balance
criterion ∇× (j×B +∇p) = 0. Thus, a nonlinear magnetic island chain is essentially
a y-dependent magnetic equilibrium.

Equation (9.96) can be integrated to give

ψ̂(x̂, ξ, t̂) =
x̂2

2
+ Ψ̂ (t̂) cos ξ, (9.97)

which is identical to the constant-ψ result (9.83). It follows that the constant-ψ ap-
proximation is valid provided that |Ĵ| � 1. In other words, provided that the per-
turbed current density in the island region is small compared to the equilibrium cur-
rent density.

Equation (9.95) implies that
Ĵ = Ĵ(ψ̂). (9.98)

In other words, the current density in the island region is a flux-surface function (i.e.,
it is constant on magnetic field-lines). Equations (9.94), (9.97), and (9.98) can be
combined to give

dΨ̂
dt̂

cos ξ = {φ̂, ψ̂} + Ĵ(ψ̂). (9.99)

It is helpful to define X = 4 x̂/Ŵ. Writing ψ̂(x̂, ξ, t̂) = Ψ̂ (t̂)Ω(X, ξ), we find that

Ω(X, ξ) =
X2

2
+ cos ξ. (9.100)

Thus, the contours of Ω(X, ξ) map out the magnetic field-lines in the vicinity of the
island chain. The region inside the magnetic separatrix corresponds to −1 ≤ Ω ≤ 1,
whereas the region outside the separatrix corresponds to Ω > 1. Let us transform into
the new coordinate system s ≡ sgn(X), Ω, and ξ. It follows that X = s

√
2 (Ω − cos ξ).

When written in terms of the new coordinates, the plasma Ohm’s law, (9.99), be-
comes

dΨ̂
dt̂

cos ξ = −
Ŵ
4

s
√

2 (Ω − cos ξ)
∂φ̂

∂ξ

∣∣∣∣∣∣
Ω

+ Ĵ(Ω). (9.101)

It is helpful to define the flux-surface average operator,

〈A(s, Ω, ξ)〉 =


∫ 2π−ξ0

ξ0

A(s,Ω,ξ)+A(−s,Ω,ξ)

2
√

2 (Ω−cos ξ)

dξ
2π −1 ≤ Ω ≤ 1∮ A(s,Ω,ξ)

√
2 (Ω−cos ξ)

dξ
2π Ω > 1

, (9.102)
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where ξ0 = cos−1(Ω). The flux-surface average operator is designed to annihilate the
first term on the right-hand side of Equation (9.101). Thus, the flux-surface average
of this equation yields

Ĵ(Ω) =
dΨ̂
dt̂
〈cos ξ〉
〈1〉

. (9.103)

Let
c̃os ξ ≡ cos ξ −

〈cos ξ〉
〈1〉

, (9.104)

which implies that 〈c̃os ξ〉 = 0. Equations (9.101) and (9.103) can be combined to
give

φ̂(s, Ω, ξ, t̂) = −
4
Ŵ

dΨ̂
dt̂

s
∫ ξ

0

c̃os ξ′√
2 (Ω − cos ξ′)

dξ′. (9.105)

According to Equations (9.37), (9.91), and (9.102), asymptotic matching between
the island solution and the solution in the outer region (i.e., the region |x̂| � Ŵ) yields

∆′ =
2

Ψ̂

∫ ∞

−∞

∮
∂2ψ̂

∂x̂2 cos ξ dx̂
dξ
2π

=
2

Ψ̂

∫ ∞

−∞

∮
Ĵ(Ω) cos ξ dx̂

dξ
2π

=
Ŵ

Ψ̂

∫ ∞

−1
Ĵ(Ω) 〈cos ξ〉 dΩ. (9.106)

Note that it is necessary to specifically project the cos ξ component out of Ĵ(Ω) be-
cause Ĵ(Ω) is a nonlinear function that possesses many cos(m ξ) components, where
m ranges from 1 to∞. (See later.) Equations (9.103) and (9.106) can be combined to
give

I1
dŴ
dt̂

= ∆′, (9.107)

where

I1 = 2
∫ ∞

0

〈cos ξ〉2

〈1〉
dΩ = 0.8227. (9.108)

(See Table 9.1.) Equation (9.107) confirms that t̂ ∼ Ŵ (provided that ∆′ ∼ 1), as was
previously assumed. Moreover, Equations (9.84), (9.103) and (9.107) demonstrate
that the constant-ψ approximation (which requires |Ĵ| � 1) is valid provided that

∆′ Ŵ � 1. (9.109)

Note that this criterion becomes harder to satisfy as the island width grows, which
implies that if the tearing mode is in the constant-ψ regime when it enters the nonlin-
ear regime (i.e., if ∆′ δ̂ � 1) then it may spontaneously leave the constant-ψ regime
as it subsequently evolves in time. (However, if ∆′ Ŵ approaches unity when ∆′ ∼ 1
then this indicates a breakdown of asymptotic matching, due to the fact that the is-
land width is no longer small compared to the current sheet thickness, rather than a
breakdown of the constant-ψ approximation.) When written in unnormalized form,
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Figure 9.6 Contours of the normalized perturbed current density distribution,
〈cos ξ〉/〈1〉, in the vicinity of a constant-ψ magnetic island chain. Positive/negative
values are indicated by solid/dashed contours.

the island width evolution equation, (9.107), yields the Rutherford island width evo-
lution equation (Rutherford 1973),

I1 τR
d(W/a)

dt
= ∆′, (9.110)

where W = a Ŵ is the island width in x. According to the Rutherford equation, the
growth of a constant-ψ tearing mode slows down as it enters the nonlinear regime
(i.e., as the island width exceeds the linear layer width). Indeed, the tearing mode
transitions from growing exponentially in time on the hybrid timescale τ2/5

H τ3/5
R to

growing algebraically in time on the much longer timescale τR.
The current density in the island region that is specified in Equation (9.103) can

be written in the form
Ĵ(x̂, ξ) =

∑
m=1,∞

Jm(x̂) cos(m ξ), (9.111)

where the Jm(x̂) are even functions of x̂ that are similar in magnitude to one another.
(Note that there is no m = 0 harmonic.) This is clear from Figure 9.6, which shows
contours of the normalized perturbed current density distribution, 〈cos ξ〉/〈1〉. [See
Equation (9.103).] It can be seen that the current density is mostly confined to the in-
terior of the magnetic separatrix, and becomes particularly large on the separatrix it-
self. (In fact, the current density blows up logarithmically on the separatrix.) Clearly,
such a current distribution cannot be represented as J1(x̂) cos ξ. In other words, the
current density distribution is multi-harmonic (i.e., it is not dominated by the m = 1
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harmonic, but contains substantial contributions from the m > 1 harmonics). It would
seem reasonable, therefore, to write the solution to (9.96) in the form

ψ̂(x̂, ξ, t̂) =
x̂2

2
+

∑
m=1,∞

Ψ̂m(t̂) cos(m ξ), (9.112)

where the Ψ̂m(t̂) are independent of x̂. However, when we actually wrote the solution
to this equation, in Equation (9.97), we omitted the higher harmonics (i.e., the Ψ̂m for
m > 1). Let us now investigate under which circumstances this approximation can
be justified. Let us, first of all, assume that the allowed wavenumbers are quantized:
that is, k = km, for m = 1,∞, where km = m k1. (Here, k1 is what we previously
referred to as k.) Obviously, the easiest way to justify the quantization of the allowed
wavenumbers is to assume that the equilibrium current sheet has a finite length 2π/k1
in the y-direction. Asymptotic matching between the island solution and the solution
in the outer region yields

Im
dŴ
dt̂

= ∆′m
Ψ̂m

Ψ̂ 1
, (9.113)

where

Im = 2
∫ ∞

−1

〈cos(m ξ)〉 〈cos ξ〉
〈1〉

dΩ. (9.114)

Note that Equation (9.113) is the multi-harmonic generalization of Equation (9.107),
Here, Ψ̂ 1 is what we previously referred to as Ψ̂ , and Ŵ = Ψ̂ 1/2

1 . Moreover, ∆′m is
the tearing stability index calculated with the wavenumber km. (So ∆′1 is what we
previously referred to as ∆′.) Equation (9.113) yields

Ψ̂m

Ψ̂ 1
=
∆′1
∆′m

Im

I1
. (9.115)

It is helpful to define k =
√

(1 + Ω)/2. Thus, k = 0 at the centers of the mag-
netic islands, k = 1 on the magnetic separatrix, and k > 1 in the region outside the
separatrix. It can be demonstrated that

〈1〉 =


K(π/2, k)/π 0 ≤ k < 1

K(π/2, 1/k)/k π k > 1
, (9.116)

〈cos ξ〉 =


[K(π/2, k) − 2 E(π/2, k)]/π 0 ≤ k < 1

[(2 k2 − 1) K(π/2, 1/k) − 2 k2 E(π/2, 1/k)]/k π k > 1
,

(9.117)

〈cos(m ξ)〉 =


∫ π/2

0
cos[2 m cos−1(k sinϕ)]
√

1−k2 sin2 ϕ

dϕ
π

0 ≤ k < 1∫ π/2
0

cos[2 m cos−1(sinϕ)]
√

k2−sin2 ϕ

dϕ
π

k > 1
, (9.118)
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Figure 9.7 Integrands for In integrals.

where

K(ϕ, k) =

∫ ϕ

0

du√
1 − k2 sin2 u

, (9.119)

E(ϕ, k) =

∫ ϕ

0

√
1 − k2 sin2 u du (9.120)

are elliptic integrals (Abramowitz and Stegun 1965). Hence, we can write

Im =

∫ ∞

0
Km(k) dk, (9.121)

where
Km(k) = 8 k

〈cos(m ξ)〉 〈cos ξ〉
〈1〉

. (9.122)

Figure 9.7 shows the integands Km(k). Note that all integrands are singular at the
magnetic separatrix (k = 1). However, the singularities are logarithmic in nature,
and, therefore, integrable. Note, further, that the higher order (i.e., m > 1) integrands
are of similar magnitude to the m = 1 integrand, which confirms that the Jm(x̂), for
m > 1, appearing in Equation (9.111), are of similar magnitude to J1(x̂). In other
words, the current density distribution is truly multi-harmonic. However, it can be
seen, from Figure 9.7, that the m = 1 integrand is always positive, whereas the m > 1
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Table 9.1 The Im integrals for m = 1 to 5.

m 1 2 3 4 5
Im 8.227 × 10−1 −8.529 × 10−2 −1.659 × 10−2 −6.410 × 10−3 −3.228 × 10−3

|I1/Im| 1.000 × 100 9.645 × 100 4.959 × 101 1.283 × 102 2.548 × 102

integrands oscillate about zero. It is not surprising, therefore, that the Im for
m > 1 are much smaller in magnitude than I1. In fact, as is shown in Table 9.1, the
Im for m > 1 are, at least, 10 times smaller than I1. It follows from Equation (9.115)
that the single-harmonic approximation for ψ̂ (i.e., the neglect of the Ψ̂m for m > 1)
is justified as long as |∆′1/∆

′
m| does not exceed the critical value |I1/Im|, for m > 1.

As shown in Table 9.1, this is a comparatively easy criterion to meet, especially if
the m = 1 harmonic is close to marginal stability (i.e., ∆′1 > 0 is small compared to
unity).

Equations (9.84), (9.105), and (9.107) yield

φ̂(s, k, ξ) =
∆′

I1
H(s, k, ξ), (9.123)

where

H(s, k, ξ) = s


F(ϕ,k) E(π/2,k)−F(π/2,k) E(ϕ,k)

F(π/2,k) 0 ≤ k < 1

k [F(ϕ′,1/k) E(π/2,1/k)−F(π/2,1/k) E(ϕ′,1/k)]
F(π/2,1/k) k > 1

, (9.124)

and

ϕ =
π

2
− sgn(ξ) cos−1[cos(ξ/2)/k], (9.125)

ϕ′ =
π

2
−
ξ

2
. (9.126)

Note that Equation (9.123) confirms that φ̂ ∼ 1 in the island region (assuming that
∆′ ∼ 1), as was previously assumed. Figure 9.8 shows contours of the normalized
stream-function, H, in the x̂-ξ plane. It can be seen that the flow pattern associated
with magnetic reconnection, which is clearly strongly multi-harmonic, is concen-
trated at the magnetic separatrix, being particularly large at the magnetic X-points
(Biskamp 1993). In fact, the flow velocity has a logarithmic singular on the mag-
netic sepatratrix, indicating that plasma inertia cannot be neglected in the immedi-
ate vicinity of the sepatatrix. Consequently, an inertial layer [i.e., a layer in which
plasma inertia cannot be neglected in Equation (9.90)], whose width is of order the
linear layer width, develops on the separatrix. Fortunately, the development of such
a layer does not invalidate the results obtained in this section (Edery, et al. 1983).
It is interesting to note that the Rutherford island width evolution equation, (9.110),
can be derived without explicitly calculating the flow pattern. Nevertheless, the flow
pattern is implicitly specified in the analysis.
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Figure 9.8 Equally-spaced contours of the normalized stream-function, H(x̂, ξ), in
the vicinity of a constant-ψ magnetic island chain. Positive/negative values are indi-
cated by solid/dashed contours.

The island width evolution equation (9.107) seems to indicate that if ∆′ > 0
then the island width, Ŵ, grows without limit. In fact, this is not the case. If we
perform the asymptotic matching between the solution in the island region and the
solution in the outer region more carefully, taking the finite width of the magnetic
island chain into account, then the tearing stability index, ∆′, which is defined in
Equation (9.34), is replaced by (White, et al. 1977; Biskamp 1993)

∆′(Ŵ) =
1

ψ̂(0)

[
dψ̂(W̄/2)

dx̂
−

dψ̂(−W̄/2)
dx̂

]
. (9.127)

Here, W̄ = 2 Ŵ/π is the average (over ξ) width of the magnetic separatrix, and ψ̂(x̂)
is a solution of the tearing mode equation, (9.31). Making use of Equation (9.36), we
deduce that

∆′(Ŵ) = ∆′(0) − α Ŵ + O(Ŵ2), (9.128)

where
α =

4
π

(2 − k̂2), (9.129)

for the specific plasma equilibrium discussed in Section 9.3. Here, ∆′(0) is specified
in Equation (9.39). Thus, the modified island width evolution equation takes the form

I1
dŴ
dt̂
' ∆′(0) − α Ŵ. (9.130)
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It is clear from this equation that nonlinear growth of the tearing mode slows down,
as the island width increases, and eventually stops when the island width attains the
value

Ŵs '
∆′(0)
α

. (9.131)

For the specific equilibrium discussed in Section 9.3, the so-called saturated island
width is

Ŵs =
π

2
1 − k̂2

k̂ (2 − k̂2)
. (9.132)

The previous expression is only accurate when Ŵs � 1 (i.e., when the saturated is-
land width is much smaller than the width of the current sheet). This is only the case
when ∆′ � 1 (i.e., when the tearing mode is close to marginal stability). However,
it seems reasonable to deduce that if ∆′ ∼ 1 then the tearing mode eventually attains
a steady-state with a saturated island width that is comparable to the width of the
equilibrium current sheet (i.e., Ŵ ∼ 1). In other words, the tearing mode completely
changes the topology of the current sheet’s magnetic field on a timescale that is of
order τR. Equation (9.127) is only approximate. However, more rigorous calcula-
tions give essentially the same result (Thyagaraja, 1981; Escande & Ottaviani 2004;
Militello & Porcelli 2004; Hastie, et al. 2005).

At first sight, the time evolution of a constant-ψ tearing mode in the nonlinear
regime seems completely different to that in the linear regime. However, it turns out
to be comparatively easy to formulate a theory that takes both regimes into account.
The time evolution of the tearing mode in the linear regime is specified by

dΨ̂
dt̂

= γ τR Ψ̂ . (9.133)

Making use of Equation (9.60), this equation reduces to

δ̂
dΨ̂
dt̂

= ∆′ Ψ̂ , (9.134)

where

δ̂ =

[
2πΓ(3/4)

Γ(1/4)

]4/5

∆′1/5 S −2/5 (9.135)

is the exact (normalized) linear layer width. The normalized Rutherford island width
evolution equation, (9.107), can be written

I1 Ŵ
2

dΨ̂
dt̂

= ∆′ Ψ̂ , (9.136)

where use has been made of Equation (9.84). It can be seen, by comparison with
Equation (9.134), that a nonlinear magnetic island evolves in time in an analogous
manner to a constant-ψ linear layer whose (normalized) thickness is I1 Ŵ/2. Thus,
the essential nonlinearity in the nonlinear regime arises because the effective layer
width scales as the square root of the mode amplitude. [See Equation (9.84).] Recall
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that Equation (9.134) is valid when δ̂ � Ŵ, whereas Equation (9.136) is valid when
δ̂ � Ŵ. Thus, Equations (9.134) and (9.136) can be combined to give the composite
evolution equation (

δ̂ +
I1 Ŵ

2

)
dΨ̂
dt̂

= ∆′ Ψ̂ (9.137)

that interpolates between the linear and nonlinear regimes. As is clear, from the pre-
vious equation, the magnetic reconnection rate decelerates in a smooth fashion as the
island width exceeds the linear layer width.

Note, finally, that the type of slow magnetic reconnection, mediated by tearing
modes that grow and eventually saturate, described in this section is observed on a
routine basis in tokamak plasmas (Wesson 2011).

9.9 SWEET-PARKER RECONNECTION

We saw, in the last section, how a constant-ψ tearing mode evolves in time after it
enters the nonlinear regime. Let us now consider how a nonconstant-ψ tearing mode
evolves in time after it enters the nonlinear regime. Recall, from Section 9.6, that
a linear nonconstant-ψ tearing mode has a normalized layer thickness δ̂ ∼ S −1/3, a
growth-rate γ ∼ S −1/3/τH = S 2/3/τR, and is characterized by ∆′ S −1/3 ∼ 1. More-
over, according to Section 9.7, the mode enters the nonlinear regime as soon as Ψ̂1/2

exceeds δ̂, which implies that ∆′ Ψ̂1/2 ≥ 1 in the nonlinear regime. Hence, Equa-
tions (9.84) and (9.106) lead to the conclusion that Ĵ ≥ 1 in the nonlinear regime. In
other words, the perturbed current density in the island region exceeds the equilib-
rium current density. Under these circumstances, both analytical calculations (Wael-
broeck 1989) and numerical simulations (Biskamp 1993; Fitzpatrick 2003) suggest
that the solution to Equation (9.91) takes the form shown schematically in Figure 9.9.
It can be seen that the nonconstant-ψ magnetic islands only occupy the regions of the
ξ-axis in which cos ξ < 0, and are connected by thin (compared to both the equilib-
rium current sheet thickness and the island width) current sheets that run along the
resonant surface (x̂ = 0), and occupy the regions of the ξ-axis in which cos ξ > 0.

Unfortunately, there is no known analytic solution of Equations (9.89)–(9.92) in
the nonconstant-ψ limit. However, we can still estimate the rate of magnetic recon-
nection using the so-called the Sweet-Parker model (Sweet 1958; Parker 1957). The
Sweet-Parker model concentrates on the dynamics of the current sheets that connect
the magnetic islands. The main features of the envisioned magnetic and plasma flow
fields in the vicinity of a given current sheet are illustrated in Figure 9.10. The recon-
necting magnetic fields are anti-parallel, and of equal strength, B∗. The current sheet
forms at the boundary between the two fields, where the direction of the magnetic
field suddenly changes, and is assumed to be of thickness δ∗ (in the x-direction), and
of length L (in the y-direction).

Plasma is assumed to diffuse into the current sheet, along its whole length, at
some relatively small inflow velocity, v0. The plasma is accelerated along the sheet,
and eventually expelled from its two ends at some relatively large exit velocity, v∗.
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Figure 9.9 Equally-spaced contours of the magnetic flux-function, ψ̂(x̂, ξ), in the
vicinity of a nonconstant-ψ magnetic island chain. The thick horizontal lines indicate
the locations of the Sweet-Parker current sheets.
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Figure 9.10 A Sweet-Parker current sheet.

The inflow velocity is simply an E × B velocity, so

v0 ∼
Ez

B∗
. (9.138)

The z-component of Ohm’s law yields

Ez ∼
η B∗
µ0 δ∗

. (9.139)
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Continuity of plasma flow inside the sheet gives

L v0 ∼ δ∗ v∗, (9.140)

assuming incompressible flow. Pressure balance along the length of the sheet yields

B 2
∗

µ0
∼ ρ v 2

∗ . (9.141)

Here, we have balanced the magnetic pressure at the center of the sheet against the
dynamic pressure of the outflowing plasma at the ends of the sheet. Finally, we can
characterize the rate of reconnection via the inflow velocity, v0, because all of the
magnetic field-lines that are convected into the sheet, along with the plasma, are
eventually reconnected. In fact,

dΨ
dt
∼ v0 B∗, (9.142)

where Ψ is the (unnormalized) reconnected magnetic flux.
Let us adopt our standard normalizations: B∗ = B0 B̂∗, Ψ = a B0 Ψ̂ , t = τR t̂,

δ∗ = a δ̂∗, v0 = (a/τR) v̂0, v∗ = (a/τR) v̂∗, where τR is specified in Equation (9.25).
Equations (9.138) and (9.139) yield

v̂0 ∼
1
δ̂∗
. (9.143)

Equation (9.141) gives

v̂∗ ∼
B̂∗ S

k̂
, (9.144)

where S = τR/τH , k̂ = k a, and τH is specified in Equation (9.24). The previous equa-
tion suggests that plasma is ejected from the ends of the current sheet at a velocity
that is comparable with the Alfvén velocity, VA = B∗/

√
µ0 ρ. The length of a given

Sweet-Parker current sheet is L = π/k (recall that ξ = k y+ ϕ, where ϕ is a constant).
Hence, the continuity equation (9.140) implies that

δ̂∗ ∼
π

k̂

v̂0

v̂∗
. (9.145)

The previous three equations can be combined to give

δ̂∗ ∼

(
π

B̂∗ S

)1/2

, (9.146)

v̂0 ∼

(
B̂∗ S
π

)1/2

. (9.147)

It is clear from Equation (9.146) that a Sweet-Parker current sheet is very thin.
In fact, the current sheet thickness is of order S 1/2 times smaller than the
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equilibrium current sheet thickness. Finally, the normalized version of Equa-
tion (9.142) yields

dΨ̂
dt̂
∼ v̂0 B̂∗ =

B̂ 3/2
∗ S 1/2

√
π

. (9.148)

Let us make the estimate

B̂∗ =
B0 y(W/2)

B0
, (9.149)

where the equilibrium magnetic field, B0, is specified in Equation (9.16), and W =

4 Ψ̂1/2 a is the full width of the magnetic island chain. [Here, we are assuming that
(9.84) also applies to nonconstant-ψ island chains.] Thus, in the small island width
limit, W � a, we get

B̂∗ = 2 Ψ̂1/2. (9.150)

Equations (9.148) and (9.150) can be combined to give

dΨ̂
dt̂

=
23/2

√
π

S 1/2 Ψ̂3/4. (9.151)

It follows that

Ψ̂ (t) =

(
t
τSP

)4

, (9.152)

assuming that Ψ̂ (0) = 0, where

τSP =
√

2π τ1/2
H τ1/2

R . (9.153)

According to Equation (9.152), once a nonconstant-ψ tearing mode enters the nonlin-
ear regime, complete magnetic reconnection (i.e., Ψ̂ ∼ 1) is achieved on the timescale
τSP. Note that this timescale is considerably shorter than the timescale (τR) needed for
a nonlinear constant-ψ tearing mode to achieve full reconnection (because τR � τH

in a high Lundquist number plasma).
Equation (9.151) can also be written in the form

d lnΨ
dt̂

=
23/2

√
π

(
δ̂

Ψ̂1/2

)1/2

S 2/3 (9.154)

where δ̂ = S −1/3 is the nonconstant-ψ linear layer thickness. The previous equa-
tion confirms that the normalized Sweet-Parker growth-rate matches the normalized
nonconstant-ψ linear growth-rate (i.e., S 2/3) at the boundary between the linear and
nonlinear regimes (i.e., Ψ̂1/2 ∼ δ̂). Note that the reconnection rate decelerates slightly
as the mode enters the nonlinear regime.

A nonlinear constant-ψ tearing mode grows on the very long resistive timescale,
τR, because plasma inertia plays no role in the reconnection process. This is true de-
spite the existence of an inertial layer on the magnetic separatrix. (See Section 9.8.)
On the other hand, a nonlinear nonconstant-ψ tearing mode grows on the much
shorter hybrid timescale τ1/2

H τ1/2
R because plasma inertia is able to play a significant
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role in the reconnection process within the Sweet-Parker current sheets that connect
the magnetic islands (but remains negligible outside the sheets).

The Sweet-Parker reconnection ansatz is undoubtedly correct. It has been sim-
ulated numerically many times, and was confirmed experimentally in the Magnetic
Reconnection Experiment (MRX) operated by Princeton Plasma Physics Laboratory
(PPPL) (Ji, et al. 1998). The problem is that Sweet-Parker reconnection takes place
far too slowly to account for many reconnection processes that are thought to take
place in the solar system. For instance, in solar flares S ∼ 108, VA ∼ 100 km s−1, and
L ∼ 104 km (Priest 1984). According to the Sweet-Parker model, magnetic energy is
released to the plasma via reconnection on a typical timescale of a few tens of days.
In reality, the energy is released in a few minutes to an hour (Priest 1984). Clearly,
we can only hope to account for solar flares using a reconnection mechanism that
operates far more rapidly than the Sweet-Parker mechanism.

9.10 PLASMOID INSTABILITY

One mechanism for obtaining fast magnetic reconnection (i.e., faster than Sweet-
Parker reconnection) is via the plasmoid instability (Loureiro, et al. 2007; Bhat-
tacharjee, et al. 2009). This instability causes Sweet-Parker current sheets to break
up into chains of secondary magnetic islands (plasmoids).

Consider the linear stability of a current sheet of the form (9.17), whose thickness
in the x-direction is a. It is helpful to define the Alfvén time, τA = a/(B 2

0 /µ0 ρ)1/2, as
well as the modified Lundquist number, S = τR/τA. Note that S has no dependence
on the wavelength, 2π/k, of the instability in the y-direction. Let us assume that
k a � 1. It follows from Equation (9.39) that ∆′ ' 2/(k a). According to the analysis
of Section 9.5, if the instability is in the constant-ψ regime then

γ τA =

[
Γ(1/4)
πΓ(3/4)

]4/5

(k a)−2/5 S−3/5, (9.155)

δ

a
∼ (k a)−3/5 S−2/5, (9.156)

where δ is the linear layer thickness (Bhattacharjee, et al. 2009). The previous two
equations are valid provided that k aS1/4 � 1. On the other hand, according to the
analysis of Section 9.6, if the instability is in the nonconstant-ψ regime then

γ τA = (k a)2/3 S−1/3, (9.157)

δ

a
∼ (k a)−1/3 S−1/3. (9.158)

The previous two equations are valid provided that k aS1/4 ≥ 1. Equations (9.155)–
(9.158) suggest that the growth-rate of the instability attains a maximum value,
γ τA ∼ S

−1/2, when k a ∼ S−1/4 and δ/a ∼ S−1/4. Note that the maximum growth-rate
occurs at the boundary between the constant-ψ and nonconstant-ψ regimes.
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Figure 9.11 Dispersion relation for the plasmoid instability. The horizontal and ver-
tical dotted lines correspond to γ̃ = 0.6235 and k̃ = 1.359, respectively.

We can determine the maximum growth-rate exactly making use of the general
linear dispersion relation (9.81). Let γ τA = γ̃S−1/2 and k a = k̃S−1/4. For the case in
hand, the dispersion relation yields

k̃ =

[
−

16
π

Q−5/4 Γ(Q3/2/4 + 5/4)
Γ(Q3/2/4 − 1/4)

]3/4

, (9.159)

where γ̃ = k̃2/3 Q. Figure 9.11 shows the variation of γ̃ with k̃ obtained from the
previous equation. It can be seen that γ̃ attains a maximum value of 0.6235 when
k̃ = 1.359. Thus, if k is unconstrained then the fastest growing instability of a current
sheet is such that γ τA = 0.6235S−1/2 and k a = 1.359S−1/4.

Let us now apply the previous analysis to a Sweet-Parker current sheet. Accord-
ing to Equations (9.84), (9.146), and (9.150), the thickness of a Sweet-Parker current
sheet is

δSP

a
∼

(
1

ε Ŵ S

)1/2

, (9.160)

where ε = a/L, and L is the periodicity length of the primary magnetic island chain
in the y-direction. (Thus, the wavenumber of the island chain is k = 2π/L.) Let us
assume that ∆′ Ŵ ∼ 1, as is generally the case in nonconstant-ψ island chains. Given
that ∆′ ∼ 1/k, it follows that Ŵ ∼ ε. Hence,

δ̂SP ∼ ε
−1 S−1/2, (9.161)
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where δ̂SP = δSP/a. We can use the previous analysis to find the fastest growing
instability of the Sweet-Parker current sheet by making the substitutions a → δ̂SP a,
τA → δ̂SP a, and S → δ̂SP S. Thus, the fastest growing instability has a growth-rate

γp τA ∼ δ̂
−3/2
SP S−1/2 ∼ ε3/2 S1/4, (9.162)

and a wavenumber
kp a ∼ δ̂−5/4

S P S
−1/4 ∼ ε5/4 S3/8. (9.163)

It follows that the Sweet-Parker current sheet breaks up into a chain of secondary
magnetic islands, or plasmoids, whose wavelength is 2π/kp. Thus, the number of
plasmoids in the island chain is

Np ∼ L kp ∼ ε
1/4 S3/8. (9.164)

The plasmoids are accelerated along the length of the current sheet and eventually
expelled from its two ends at the Alfvén velocity. Recall, from Equation (9.154), that
the linear growth-rate of the primary instability matches the nonlinear growth-rate at
the boundary between the linear and nonlinear regimes. It is, therefore, reasonable to
assume that the linear growth-rate of the secondary instability is similar in magnitude
to its initial nonlinear growth-rate. This suggests that the plasmoid instability is able
to reconnect magnetic flux at a much faster rate that the Sweet-Parker mechanism. In
fact, the timescale for the plasmoid instablity to achieve full reconnection is estimated
as

τp ∼
1
γp
∼ ε−3/2 τ5/4

A τ−1/4
R . (9.165)

This is a significantly shorter timescale that that associated with Sweet-Parker recon-
nection,

τSP ∼ ε
−1 τ1/2

A τ1/2
R , (9.166)

especially in a high Lundquist number plasma in which τR � τA. Note that the
normalized thickness of the secondary Sweet-Parker current sheets that connect the
plasmoids is

δ̂p ∼ δ̂
3/4
SP S

−1/4 ∼ ε−3/4 S−5/8. (9.167)

The previous analysis gives the impression that all Sweet-Parker current sheets
are unstable to the plasmoid instability. In fact, this is not the case. In order for
the analysis to remain valid there needs to be a reasonable separation between the
thickness of the primary Sweet-Parker current sheet, δSP, and that of the secondary
Sweet-Parker current sheets, δp. Say,

δp <
1
3
δSP (9.168)

(Loureiro, et al. 2007). The previous relation leads to the plasmoid instablity criterion

S > (3 ε1/4)8 ∼ 104 ε2. (9.169)

In other words, the plasmoid instability only occurs when the Lundquist number
exceeds a critical value that is of order 104 (assuming that ε ∼ 1). This instability
criterion has been verified numerically (Bhattacharjee, et al. 2009).
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9.11 EXERCISES

1. Derive Equations (9.11)–(9.14) from Equations (9.3)–(9.10).

2. Consider the linear tearing stability of the following field configuration,

F(x̂) =

{
F′(0) x̂ |x̂| < 1
F′(0) sgn(x̂) |x̂| ≥ 1

.

This configuration is generated by a uniform, z-directed current sheet of thick-
ness a, centered at x = 0.

(a) Solve the tearing mode equation, (9.31), subject to the constraints
ψ̂(−x̂) = ψ̂(x̂), and ψ̂(x̂) → 0 as |x̂| → ∞. Hence, deduce that the tearing
stability index for this configuration is

∆′ =
2 k̂

tanh k̂

[
k̂ + k̂ tanh k̂ − 1

1 − k̂/ tanh k̂ − k̂

]
.

(b) Show that

∆′ →
2

k̂
−

8
3

+ O(k̂)

as k̂ → 0, and

∆′ → −2 k̂ + 2
[
1 +

1

2 k̂
+ O

(
1

k̂2

)]
exp(−2 k̂)

as k̂ → ∞.
(c) Demonstrate that the field configuration is tearing unstable (i.e., ∆′ > 0)

provided that k̂ < k̂c, where

k̂c (1 + tanh k̂c) = 1.

Show that k̂c = 0.639.

3. We can incorporate plasma viscosity into the reduced-MHD equations, (9.11)–
(9.14), by modifying Equation (9.4) to read

ρ

[
∂V
∂t

+ (V · ∇)V
]

+ ∇p − j × B − µ∇2V = 0,

where µ is the viscosity.

(a) Show that the reduced-MHD equations generalize to give

∂ψ

∂t
= [φ, ψ] +

η

µ0
(J − J0),

ρ
∂U
∂t

= ρ [φ,U] + µ−1
0 [J, ψ] + µ∇2U,

J = ∇2ψ,

U = ∇2φ.



274 � Plasma Physics: An Introduction (2nd Edition)

(b) Show that Equations (9.22) and (9.23) generalize to give

γ ψ1 = i k B0 F φ1 +
η

µ0

(
d2

dx2 − k2
)
ψ1,

γ ρ

(
d2

dx2 − k2
)
φ1 = i µ−1

0 k B0 F
(

d2

dx2 − k2 −
d2F/dx2

F

)
ψ1

+ µ

(
d2

dx2 − k2
)2

φ1.

(c) Show that Equations (9.27) and (9.28) generalize to give

S γ̂
(
ψ̂ − F φ̂

)
=

(
d2

dx̂2 − k̂2
)
ψ̂,

γ̂2
(

d2

dx̂2 − k̂2
)
φ̂ = −F

(
d2

dx̂2 − k̂2 −
F′′

F

)
ψ̂ + γ̂ S −1 P

(
d2

dx̂2 − k̂2
)2

φ̂,

where
P =

τR

τM

is the magnetic Prandtl number, and

τM =
ρ0 a2

µ

is the viscous diffusion time.
(d) Show that the resistive layer equations, (9.32) and (9.33), generalize to

give

S γ̂ (ψ̂ − x̂ φ̂) =
d2ψ̂

dx̂2 ,

γ̂2 d2φ̂

dx̂2 = −x̂
d2ψ̂

dx̂2 + γ̂ S −1 P
d4φ̂

dx̂4 .

(e) Show that the Fourier transformed resistive layer equation, (9.45), gen-
eralizes to give

d
dp

(
p2

Q + p2

dφ̄
dp

)
−

(
Q p2 + P p4

)
φ̄ = 0.

(f) Finally, solve the Fourier transformed resistive layer equation to deter-
mine the layer matching parameter, ∆. Demonstrate that if 1 � Q � P2/3

then
∆ = 2π

Γ(3/4)
Γ(1/4)

S 1/3 Q5/4,

whereas if Q � P−1/3, P2/3 then

∆ = 62/3π
Γ(5/6)
Γ(1/6)

S 1/3 Q P1/6.
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4. Consider the effect of plasma viscosity on the Sweet-Parker reconnection sce-
nario. The viscosity is conveniently parameterized in terms of the magnetic
Prandtl number

P =
µ0 µ

η ρ
,

where µ is the viscosity. Demonstrate that if P � 1 then the conventional
Sweet-Parker reconnection scenario remains valid, but that if P � 1 then the
scenario is modified such that

v̂∗ ∼
B̂∗ S

k̂ P1/2
,

v̂0 ∼

(
B̂∗ S
π P1/2

)1/2

,

δ̂∗ ∼

(
π P1/2

B̂∗ S

)1/2

,

dΨ̂
dt̂

=
23/2

√
π

S 1/2

P1/4 Ψ̂
3/4.
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